Effect of Low-Power DPSS Laser Irradiation upon the Stability of Packed RBCs after Different Storage Periods
Keywords:
Stored RBCS, Low-power DPSS laser, Blood stabilityAbstract
Numerous studies have demonstrated that laser therapy significantly enhances biological systems; low- power lasers have been frequently used in medicinal applications. The aim of the research is to determine whether the stability of stored RBCs is impacted by low-power DPSS laser irradiation. Venipuncture was used to collect human blood samples, which were then put in tubes with the anticoagulant citrate-phosphate dextrose-adenine (CPDA-1). After being separated into eight equal aliquots, the blood sample was kept at 4ºC for 21 days. The stability test was conducted on days 0, 7, 14, and 21 of storage for both radiated and non-irradiated aliquots. The test measures the percentage of hemolysis of an overnight sored RBC in saline solution. The irradiated aliquots were exposed to a DPSS laser at a wavelength of 650 nm with dosages of 30, 50, and 70 J/cm² for 15 minutes. Exposure of RBC suspension to a 650 nm wavelength low-power laser and a radiation doses of 70 J/ cm², 50 J/ cm², and 30 J/ cm² was associated with a significant reduction in the percentage of hemolysis that ranged from 3% to 11% throughout the whole storage time. In conclusion, it is observed that throughout storage periods, the 70 J/ cm² has a greater impact on the stability of the RBC suspensions.
References
H. K. Mohseen, K. N. Madlum, and H. A. Jabbar, “Effect of low level laser irradiation on white and red blood cells after different storage periods,” Int. J. Drug Deliv. Technol., vol. 10, no. 4, pp. 617–619, 2020, doi: 10.25258/ijddt.10.4.19.
A. Y. Al-Yasiri, “In Vitro Influence of Low-Power Diode Laser Irradiation Time on Human Red Blood Cells,” Photomed. Laser Surg., vol. 36, no. 5, pp. 253–257, 2018, doi: 10.1089/pho.2017.4395.
T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron., vol. 7, no. 6, pp. 982–988, 2001, doi: 10.1109/2944.983303.
A. N. Korolevich, N. S. Dubina, and S. I. Vecherinski, “Influence of low-intensity laser radiation on human blood microcirculation,” Opt. Diagnostics Biol. Fluids V, vol. 3923, no. May 2000, pp. 175–179, 2000, doi: 10.1117/12.387140.
M. S. Al Musawi, M. S. Jaafar, B. Al-Gailani, N. M. Ahmed, F. M. Suhaimi, and M. Bakhsh, “Erythrocyte sedimentation rate of human blood exposed to low-level laser,” Lasers Med. Sci., vol. 31, no. 6, pp. 1195–1201, 2016, doi: 10.1007/s10103-016-1972-1.
M. L. Esmaiel, M. S. Al Musawi, and B. T. Al-Gailani, “Influence of low power diode pumping solid state laser radiation on the red blood suspension viscosity and deformability,” Mater. Today Proc., 2021, doi: 10.1016/j.matpr.2021.02.770.
J. C. Sutherland, “Biological Effects of Polychromatic Light¶,” Photochem. Photobiol., vol. 76, no. 2, pp. 164–170, 2007, doi: 10.1562/0031-8655(2002)0760164beopl2.0.co2.
G. A. Zalesskaya and E. G. Sambor, “Interaction of low-intensity laser radiation with blood and its components,” J. Appl. Spectrosc., vol. 72, no. 2, pp. 242–248, 2005, doi: 10.1007/s10812-005-0062-0.
J. Kujawa, L. E. U. Zavodnik, and I. Zavodnik, “( 810 nm ) Laser Radiation on Red Blood Cell ATPase,” J. Clin. LaserMedicine Surg., vol. 22, no. 2, pp. 111–117, 2004.
X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B Biol., vol. 74, no. 1, pp. 7–12, 2004, doi: 10.1016/j.jphotobiol.2004.01.003.
M. S. A. Al Musawi, M. S. Jafar, B. T. Al-Gailani, N. M. Ahmed, F. M. Suhaimi, and N. Suardi, “In Vitro Mean Red Blood Cell Volume Change Induced by Diode Pump Solid State Low-Level Laser of 405 nm,” Photomed. Laser Surg., vol. 34, no. 5, pp. 211–214, 2016, doi: 10.1089/pho.2015.4043.
S. M. Sallam, A. M. Sallam, E.-S. M. El-Sayed, L. I. A. Salem, and M. M. Rizk, “Enhancement of Human Blood Storage Period by Irradiation of Low Level He-Ne Laser,” J. Biophys. Chem., vol. 06, no. 03, pp. 77–86, 2015, doi: 10.4236/jbpc.2015.63008.
A. C. Zubair, “Clinical impact of blood storage lesions,” Am. J. Hematol., vol. 85, no. 2, pp. 117–122, 2010, doi: 10.1002/ajh.21599.
X. Q. Mi, J. Y. Chen, Z. J. Liang, and L. W. Zhou, “In vitro effects of helium-neon laser irradiation on human blood: Blood viscosity and deformability of erythrocytes,” Photomed. Laser Surg., vol. 22, no. 6, pp. 477–482, 2004, doi: 10.1089/pho.2004.22.477.
A. Jain et al., “Storage stability of commonly used haematological parameters at 33 °C: Electronic supplementary material available online for this article.,” Biochem. medica, vol. 28, no. 2, p. 020901, 2018, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/29666560%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5898956.
M. R. Hamblin, Y. Y. Huang, S. K. Sharma, and J. Carroll, “Biphasic dose response in low level light therapy - an update,” Dose-Response, vol. 9, no. 4, pp. 602–618, 2011, doi: 10.2203/dose-response.11-009.Hamblin.
A. P. Sommer, A. L. B. Pinheiro, A. R. Mester, R. P. Franke, and H. T. Whelan, “Biostimulatory windows in low-intensity laser activation: Lasers, scanners, and NASA’s light-emitting diode array system,” J. Clin. Laser Med. Surg., vol. 19, no. 1, pp. 29–33, 2001, doi: 10.1089/104454701750066910.
A. Orbach, O. Zelig, S. Yedgar, and G. Barshtein, “Biophysical and Biochemical Markers of Red Blood Cell Fragility,” Transfus. Med. Hemotherapy, vol. 44, no. 3, pp. 183–187, 2017, doi: 10.1159/000452106.
X. Q. Mi, J. Y. Chen, and L. W. Zhou, “Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane,” J. Photochem. Photobiol. B Biol., vol. 83, no. 2, pp. 146–150, 2006, doi: 10.1016/j.jphotobiol.2005.12.018.
Y. A. Vladimirov, A. N. Osipov, and G. I. Klebanov, “Bcm_0081,” vol. 69, no. 1, 2004.
M. S. Al Musawi, M. S. Jaafar, B. Al-Gailani, N. M. Ahmed, and F. M. Suhaimi, “Laser-induced changes of in vitro erythrocyte sedimentation rate,” Lasers Med. Sci., vol. 32, no. 9, pp. 2089–2095, 2017, doi: 10.1007/s10103-017-2340-5.