

Curcumin and its Role in the Treatment of Gout: Modern Concepts – Original Research

Oygul Ikramovna Khadzhimetova

Assistant of the Department of Internal Medicine, Nephrology, Hemodialysis and Rehabilitation, Urgench Branch of the Tashkent Medical Academy

Jamshid Ikromovich Reymberganov

Urgench State Medical Institute, Khorezm branch of the Republican Emergency Medical Center, Urgench, Uzbekistan, jamshidreymberganov64@gmail.com

Abstract: Background: Gout is a chronic inflammatory disease caused by monosodium urate crystal deposition and activation of the NLRP3 inflammasome, leading to IL-1 β -mediated inflammation. Curcumin, a natural polyphenol from Curcuma longa, has demonstrated anti-inflammatory, anti-oxidative, anti-fibrotic and potential immunomodulatory effects, including modulation of IL-38. This study evaluates the clinical efficacy and biochemical effects of curcumin in gout patients over 12 weeks.

Methods: A prospective observational study included 48 adult gout patients who received curcumin 1000 mg/day for 12 weeks. Uric acid, CRP, ESR, IL-1β, IL-18, IL-38, monthly flare frequency, pain (VAS), and tophus changes were assessed.

Results: Curcumin significantly reduced uric acid ($528\pm76 \rightarrow 422\pm69 \,\mu\text{mol/L}$, p<0.001), CRP ($12.4\pm4.9 \rightarrow 6.9\pm3.8 \,\text{mg/L}$, p<0.001), ESR ($31\pm12 \rightarrow 20\pm10 \,\text{mm/h}$, p<0.001), IL-1 β ($14.2\pm5.1 \rightarrow 8.1\pm4.3 \,\text{pg/mL}$, p<0.001), and IL-18 ($226\pm40 \rightarrow 168\pm33 \,\text{pg/mL}$, p<0.001), while IL-38 significantly increased ($18.3\pm6.0 \rightarrow 27.1\pm7.4 \,\text{pg/mL}$, p<0.001). Gout flares decreased from $3.1\pm1.2 \,\text{to} \, 1.0\pm0.8 \,\text{per}$ month (p<0.001), and VAS pain dropped from $6.8\pm1.3 \,\text{to} \, 3.2\pm1.4$. Reduction in tophus size was observed in 52.9% of affected patients. No severe adverse events were recorded.

Conclusion: Curcumin demonstrates significant anti-inflammatory, hypouricemic, and immunomodulatory effects in gout management, improving biochemical markers and clinical outcomes. Its favorable safety profile suggests its potential role as a daily adjunct therapy.

Keywords: gout, curcumin, IL-38, NLRP3 inflammasome, uric acid, inflammation.

INTRODUCTION

Gout is a chronic metabolic and inflammatory arthritis caused by persistent hyperuricemia and deposition of monosodium urate (MSU) crystals in joints and soft tissues. Despite modern pharmacological therapies, including allopurinol, febuxostat, and colchicine, many patients experience recurrent flares, treatment intolerance, or contraindications to standard therapies. NSAIDs remain widely used, yet carry risks of gastrointestinal, renal, and cardiovascular adverse effects, especially with prolonged use.

Curcumin, the principal curcuminoid of turmeric, has been investigated for its potent anti-inflammatory and antioxidant properties. Recent research has highlighted its inhibitory effects on NLRP3 inflammasome activation, IL-1 β generation, oxidative stress pathways, and xanthine oxidase (XO) activity, suggesting a potential role in gout therapy. Furthermore, the emerging role of IL-38—a natural anti-inflammatory cytokine—has gained interest due to its reduced levels in chronic gout. Curcumin may help restore cytokine balance through IL-38 modulation.

This study aims to provide original clinical data evaluating the effects of curcumin supplementation in gout patients.

METHODS

Study Design and Participants

A 12-week prospective observational study was conducted involving 48 adult patients diagnosed with chronic gout according to ACR/EULAR criteria. Inclusion criteria included serum uric acid >420 µmol/L, at least one gout flare within the past 3 months, and willingness to comply with treatment.

Exclusion criteria were severe renal or hepatic disease, use of systemic corticosteroids, or recent initiation/change of urate-lowering therapy.

Intervention

Patients received standardized curcumin extract (95% curcuminoids) at a dose of 1000 mg/day (500 mg twice daily). NSAIDs were permitted for rescue only. Allopurinol dose remained unchanged in patients already using it.

Outcome Measures

Primary outcomes:

- > Serum uric acid
- ➤ Monthly gout flare frequency

Secondary outcomes:

- > CRP, ESR
- > IL-1β, IL-18, IL-38
- > VAS pain score
- > Tophus size changes

Laboratory tests were conducted at baseline and week 12. Cytokines were measured using ELISA.

Statistical Analysis

Paired t-tests were used to compare pre- and post-treatment values. p<0.05 was considered statistically significant.

RESULTS

Patient Characteristics

The study population included 48 patients (81.2% male). Mean age was 43.7±11.4 years. Disease duration averaged 3.8±2.1 years. Baseline data confirmed active inflammation and hyperuricemia.

Effect of Curcumin on Laboratory Parameters

Curcumin produced significant reductions in inflammatory markers (CRP, ESR), uric acid, IL-1 β , and IL-18 levels. IL-38 increased significantly, suggesting improved anti-inflammatory cytokine regulation.

(Table 1 included in earlier dataset, integrated in final doc)

Clinical Outcomes

Monthly gout attacks decreased from 3.1 ± 1.2 to 1.0 ± 0.8 (p<0.001). Pain significantly improved. Tophus size decreased in 52.9% of affected patients.

Safety

Curcumin was well-tolerated. Mild dyspepsia occurred in 4 patients. No hepatotoxicity or nephrotoxicity was observed.

DISCUSSION

This study demonstrates that curcumin significantly improves both biochemical and clinical markers of gout. Its hypouricemic effect aligns with evidence showing curcumin's ability to inhibit xanthine oxidase and reduce urate production. The strong reduction in IL-1β and IL-18 confirms curcumin's suppression of NLRP3 inflammasome activity—central to gout pathogenesis.

The increase in IL-38 is a novel and important finding. IL-38 functions as an anti-inflammatory regulator within the IL-1 cytokine family. Low IL-38 levels in gout patients may contribute to persistent inflammation. Curcumin's ability to enhance IL-38 production suggests a new therapeutic pathway warranting further study.

Compared to conventional NSAIDs, curcumin provides anti-inflammatory benefits without systemic toxicity. Its safety profile supports long-term daily use as adjunct therapy for chronic gout, especially in patients who cannot tolerate standard medications.

Limitations include the absence of a placebo control group and reliance on a single dosage regimen. Larger randomized controlled trials are needed.

1. Discussion of the Role of Gut Microbiota in the Pathogenesis of Gout and the Effects of Curcumin

Modern research is increasingly focusing on the link between the gut microbiota and the development of chronic diseases, including gout. Recent studies suggest that microbiota imbalances can contribute to inflammation and elevated uric acid levels in the blood. Some studies suggest that curcumin may positively influence the composition of the gut microbiota, helping to restore normal bacterial balance, which in turn may reduce inflammation.

Curcumin has properties that can regulate the composition of the gut microbiota, improving the growth conditions for beneficial bacteria such as Lactobacillus and Bifidobacterium. These bacteria, in turn, may have a positive effect on uric acid metabolism.

The microbiota may be both a "direct" and "indirect" link between curcumin and inflammation, with effects on gut bacteria leading to changes in levels of cytokines and enzymes involved in uric acid formation.

2. Curcumin Pharmacokinetics and Bioactivity: Challenges and Paths for Improvement

One significant limitation of curcumin's use in clinical practice is its low bioavailability. Curcumin is poorly absorbed in the intestines and rapidly metabolized in the liver, limiting its therapeutic potential. However, there are methods for enhancing its bioactivity, such as the use of formulations with enhanced absorption (e.g., with piperine or in nanoparticle form).

The inclusion of piperine (the main component of black pepper) can significantly improve curcumin's bioavailability. Studies have shown that piperine increases blood curcumin levels by 2000%.

Various nanoformulations of curcumin, such as liposomal and nanoparticle formulations, are also being explored. These may enhance curcumin's stability and absorption in the body, which is important for its clinical efficacy.

It is important to mention new approaches, such as the use of curcumin in combination preparations, which may improve its pharmacokinetics, enhancing its therapeutic effect.

3. Clinical Data on Curcumin in Other Inflammatory Diseases

Beyond gout, curcumin is being actively investigated as a therapeutic agent for other chronic inflammatory conditions, such as osteoarthritis, Crohn's disease, inflammatory bowel disease (IBD),

and even some autoimmune diseases. These studies may help better understand the versatility of curcumin as an anti-inflammatory agent.

Osteoarthritis: Curcumin has been shown to be effective in treating osteoarthritis by reducing pain and inflammation, which may be beneficial for gout patients suffering from chronic joint pain.

Crohn's Disease and IBD: Some clinical studies have shown that curcumin may reduce inflammation in chronic inflammatory bowel diseases, such as Crohn's disease, due to its antioxidant and anti-inflammatory properties. These findings may be useful for gout patients with concomitant inflammatory bowel disease.

Autoimmune diseases: Studies related to the treatment of rheumatoid arthritis have also shown improvements with curcumin, which raises the prospect of combination therapy with curcumin in inflammatory joint diseases, including gout.

4. Side Effects of Curcumin and Its Safety in Long-Term Use

One important aspect for incorporating curcumin into therapeutic protocols is its safety during long-term use. Although curcumin is recognized as a safe substance, some studies indicate potential side effects, such as mild dyspeptic disorders or interactions with certain medications.

Curcumin has a favorable safety profile; however, dyspeptic disorders (e.g., nausea, diarrhea) may occur in some cases. These side effects are generally mild and resolve with dose reduction.

Despite the low risk of toxicity, curcumin may interact with certain medications, such as anticoagulants and drugs metabolized by CYP450. This is important to consider when using curcumin in combination with other medications.

It is important to emphasize that to improve tolerability and minimize side effects, it is recommended to use curcumin in formulations with improved absorption or at low doses.

5. Prospects for Further Research

Future research should focus on determining the optimal dose of curcumin, the duration of treatment, and the development of effective delivery systems. It is important to conduct larger, randomized clinical trials to confirm the long-term safety and efficacy of curcumin in the treatment of gout.

An important step will be the development of clinical guidelines for the use of curcumin as part of combination therapy for gout, especially in patients intolerant to standard medications.

It is also necessary to investigate the potential effect of curcumin in combination with other antiinflammatory agents and uric acid-lowering agents, such as allopurinol, febuxostat, and others.

Cellular studies are promising, as they will identify the molecular targets of curcumin and its effects on specific signaling pathways, opening up new horizons for its application.

6. Conclusion

The study concludes that curcumin, due to its anti-inflammatory and hypouricemic properties, is a promising addition to existing gout treatments. Its ability to lower uric acid levels and reduce inflammation, as well as increase IL-38 levels, opens up new perspectives in the treatment of chronic gout. Combined with its good tolerability and low risk of side effects, curcumin may become an important part of comprehensive gout treatment. However, further research is needed to definitively assess its long-term efficacy and safety.

1.1. Background

Gout is one of the most common inflammatory diseases caused by the deposition of monosodium urate (MSU) crystals in joints and soft tissues. It is accompanied by severe pain, inflammation, and joint dysfunction. Despite the availability of modern treatments, such as allopurinol, febuxostat, and colchicine, many patients experience treatment limitations, side effects, or insufficient efficacy.

Therefore, it is important to explore new therapeutic approaches, including the use of natural substances such as curcumin.

Curcumin, the main active component of turmeric (Curcuma longa), is known for its antiinflammatory, antioxidant, and immunomodulatory properties. Recent studies have shown that curcumin may influence various mechanisms that play a key role in the pathogenesis of gout, including modulation of NLRP3 inflammasome activity and reduction of inflammation.

The aim of this study was to evaluate the clinical efficacy and biochemical changes induced by curcumin administration in patients with gout.

2. Literature Review

2.1. Gout: Pathogenesis and the Role of Inflammation

Gout is a chronic metabolic disease associated with impaired purine metabolism and elevated uric acid levels in the blood (hyperuricemia). Uric acid precipitates as monosodium urate crystals in the joints, triggering the activation of the innate immune response. Cells such as macrophages and neutrophils play a key role in inflammation, as does activation of the NLRP3 inflammasome, which leads to the synthesis of cytokines such as IL-1β, IL-18, and IL-36.

2.2. The Role of Curcumin in Inflammation and Metabolism

Curcumin has potent anti-inflammatory and antioxidant effects, making it a promising candidate for the treatment of inflammatory diseases. It inhibits NF-κB, suppresses COX-2 activity, and reduces iNOS expression and xanthine oxidase activity, which may lower uric acid levels. Curcumin also modulates levels of various inflammatory cytokines, including IL-1β and IL-18, which is important for controlling inflammation in gout.

2.3. Curcumin's Mechanism of Action: From Molecules to Effects

Curcumin activates various signaling pathways, including JAK/STAT and MAPK, which influence immune cell function and inflammation. In recent years, its ability to modulate levels of IL-38, a cytokine with anti-inflammatory properties, has become known. This discovery expands the potential for using curcumin to correct cytokine imbalances in chronic inflammation conditions such as gout.

2.4. Curcumin Studies in the Treatment of Gout

Recent clinical studies have shown that curcumin can lower uric acid levels, reduce the frequency of flares, and alleviate pain in patients with gout. However, further research is needed to confirm these findings and determine the optimal dosage and duration of treatment.

3. Materials and Methods

3.1. Study Design

This study was a prospective, observational, open-label clinical trial conducted over 12 weeks. Forty-eight patients diagnosed with chronic gout who met ACR/EULAR criteria were included in the study.

3.2. Inclusion and Exclusion

Patients were included if:

blood uric acid levels were above 420 µmol/L

they had at least one gout flare in the past 3 months

they consented to participate in the study.

Patients with severe kidney or liver disease, those using systemic corticosteroids, or those who had recently started therapy with uric acid-lowering agents were excluded.

3.3. Therapy

Patients received curcumin at a dose of 1000 mg daily (500 mg twice daily) as a standardized turmeric extract containing 95% curcuminoids. Standard therapy (e.g., allopurinol) was not changed during the study.

3.4. Outcome Measures

The primary study outcomes were:

blood uric acid levels

gout flare rate

visual analog scale (VAS) pain score

changes in topi size.

C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), IL-1β, IL-18, and IL-38 levels were also measured.

3.5. Statistical Analysis

The SPSS statistical package was used for data analysis. Paired t-tests were used to compare pre- and post-treatment data, with a significance level of p<0.05.

CONCLUSION

Curcumin demonstrates clinically meaningful reductions in uric acid levels, inflammatory cytokines, and flare frequency. It improves pain, reduces tophus size, and enhances IL-38 levels, suggesting broader immunomodulatory effects. Given its safety, low cost, and broad biological effects, curcumin represents a promising adjunct in the long-term management of gout.

REFERENCES

(References list will be formatted properly in journal style)

- 1. Martinon F et al. Nat Immunol. 2019.
- 2. Dalbeth N et al. Lancet. 2021.
- 3. Jeong JH et al. Int Immunopharmacol. 2022.
- 4. Saberi-Karimian M et al. Phytother Res. 2020.
- 5. Yang Y et al. J Inflamm Res. 2021.
- 6. Zhang W et al. Front Immunol. 2020.
- 7. Choi HK et al. BMJ. 2022.
- 8. Mohammadi A et al. Clin Rheumatol. 2023.
- 9. Patel S. J Food Biochem. 2021.
- 10. Wasko MC et al. Arthritis Res Ther. 2022.