

Study of the Effect of Darmonala Extract on Liver Functional State in Toxic Hepatitis

Karimova G.A

Associate professor, Department of Pharmacology, normal and pathological physiology, Tashkent State Medical University

Kaldibayeva A.O

Senior lecturer, Department of Pharmacology, normal and pathological physiology, Tashkent State Medical University

Abstract: In this study, the effect of Darmonala extract on liver function under conditions of toxic hepatitis was investigated. Based on my personal experience, the research materials included intact laboratory rats and rats with experimentally induced chronic toxic hepatitis, as well as their offspring. The results I obtained showed that liver pathologies in mother rats with toxic hepatitis caused significant changes in the postnatal ontogenesis of their offspring. In particular, in my opinion, dystrophic-destructive changes in hepatocytes, a decrease in glycogen content, vacuolization of hepatocytes, and cytoplasmic deformation were observed. From my observations, Darmonala extract may play a protective role in these processes, as its application helped maintain the stability of the liver's morphometric and histological indicators.

Keywords: Toxic hepatitis, Darmonala extract, liver function, postnatal ontogenesis, morphometric analysis, laboratory rats, histological examination, hepatocytes.

Introduction

Liver function plays a crucial role in maintaining overall health, including metabolism, detoxification, and storage of nutrients. In my personal view, the liver is one of the most important organs in the body. Indeed, external and internal environmental factors, as well as various toxic influences, can significantly disrupt liver function. In recent years, despite advances in medicine and technology, liver diseases caused by toxic agents remain a serious concern worldwide.

Based on my personal experience, during experiments conducted in my laboratory, I observed that offspring of mothers with toxic hepatitis showed significant postnatal changes in liver development. In particular, structural and functional alterations in hepatocytes were evident, including dystrophic and destructive changes, vacuolization, and decreased glycogen content. My observations suggest that natural extracts, such as Darmonala, may play a protective role in maintaining liver stability. Moreover, my laboratory experiments confirmed that the application of Darmonala extract contributed to preserving both morphometric and histological parameters of the liver. From my personal perspective, studying the influence of plant extracts on liver function provides valuable insights not only for experimental research but also for practical approaches to supporting liver health.¹

¹ Abdullaeva, S., & Karimov, T. (2022). Medicinal Plants for Supporting Liver Function: Biochemical and Pharmacological Aspects. Tashkent: Science and Technology.

Research Methodology

In this study, I examined the effect of Darmonala extract on liver function under conditions of toxic hepatitis. Based on my personal experience, I selected intact laboratory rats and rats with a chronic toxic hepatitis model, along with their offspring, as the primary research subjects. My personal observation suggests that studying liver changes in these animals is essential to understand how toxic hepatitis affects postnatal ontogenesis. Indeed, during experiments in my laboratory, I closely monitored the morphological and histological features of the liver. I observed hepatocyte structure, glycogen content, signs of vacuolization, cytoplasmic deformation, and other indicators of liver health. From my personal perspective, these observations allowed me to track subtle changes in liver function over time and to assess the potential protective effects of Darmonala extract. My methodological approach was based on a combination of histological analysis, morphometric measurements, and statistical evaluation. I conducted comparative analyses between control and experimental groups, carefully recording data at specific postnatal stages. I found that systematic monitoring of liver tissue provides reliable insights into how toxic stress affects hepatocytes and how plant-based extracts can support liver regeneration. My personal experience shows that morphometric and histological methods, combined with careful laboratory observation, are effective for evaluating liver function. I also noted that liver responses are influenced not only by the extract but also by the general health and development of the animals, highlighting the importance of controlling experimental conditions. Based on my methodological approaches, I can confidently state that integrating laboratory experiments, personal observations, and quantitative measurements provides a strong foundation for understanding the protective role of Darmonala extract in liver health. My personal reflection is that careful experimental design and repeated monitoring are crucial for drawing meaningful conclusions about liver morphology and function.

Furthermore, using these methods allowed me to detect both subtle and pronounced changes in liver tissue, including inflammation, necrotic areas, and regenerative processes. My laboratory experiments also demonstrated that these methodological approaches help not only to evaluate liver function but also to optimize the use of plant extracts for supporting natural detoxification processes. Overall, methodological condition I can conclude that a combination of histological, morphometric, and experimental methods, together with careful personal observation, provides comprehensive and reliable results for studying liver function under toxic stress conditions and assessing the potential benefits of Darmonala extract.²

Literature Review

In preparing this study, I carefully examined both local and international literature related to liver function, toxic hepatitis, and the use of medicinal plant extracts, particularly Darmonala. My personal reflection is that reviewing these sources allowed me to understand the broader context of hepatoprotective research. From the foreign literature I reviewed, I noticed that plant extracts such as milk thistle (*Silybum marianum*), dandelion root (*Taraxacum officinale*), artichoke (*Cynara scolymus*), and turmeric (*Curcuma longa*) have been widely recognized for their protective and regenerative effects on the liver. When I analyzed these studies, I observed that the hepatoprotective properties of these plants were confirmed in multiple experimental and clinical investigations. For example, international pharmacological research emphasizes that silymarin, the active compound in milk thistle, significantly reduces inflammation and supports the regeneration of hepatocytes. Based on my personal experience in the laboratory, I can say that these findings align with my observations: plant extracts contribute not only to structural stabilization of liver tissue but also to maintaining metabolic balance under toxic stress conditions. My personal experience and experiments reinforced the

² Ahmedov, R. (2021). *Organic and Natural Methods of Detoxification*. Samarkand: University Publishing.

theoretical conclusions drawn from the literature. Indeed, when I analyzed foreign sources, I observed consistent evidence that medicinal plants stimulate liver regeneration, reduce inflammatory processes, and normalize glucose and lipid metabolism. These sources highlight the importance of combining plant-based interventions with careful monitoring of postnatal development, diet, and general health to achieve optimal liver function. From my perspective, reviewing the literature also allowed me to identify gaps and potential areas for further research. I noticed that despite extensive studies on hepatoprotective plants, few investigations focus on the effects of such extracts on postnatal liver ontogenesis in offspring of animals affected by toxic hepatitis. Therefore, my study fills this gap by combining experimental data with insights from both local and international literature. My personal reflection is that the literature review provided a strong foundation for designing experiments, interpreting results, and understanding the mechanisms by which Darmonala extract supports liver function. It also emphasized the importance of integrating knowledge from multiple sources to develop a holistic approach to hepatoprotection.

Analysis and Results

Based on the results obtained from my experiments and personal analyses, it can be observed that the administration of Darmonala extract had a significant impact on liver function in the context of toxic hepatitis. My personal evaluation is that the extract contributed to stabilizing hepatocyte morphology and maintaining metabolic activity. When I conducted the laboratory experiments, the hepatocytes of offspring born to mothers affected by chronic toxic hepatitis showed notable structural alterations, including signs of dystrophic-destructive changes, cytoplasmic vacuolization, and deformation of cellular structures. Referring to my personal observations, I noticed that in the control group, the progression of liver cell regeneration was slower, whereas in the Darmonala-treated group, hepatocyte recovery occurred more rapidly. These findings indicate that the extract may play a protective and restorative role in liver tissue. My analyses suggest that the treatment helped in reducing the extent of inflammatory infiltration and promoted a more uniform distribution of glycogen granules within hepatocytes. Indeed, my personal assessments showed that glycogen content, which was severely depleted in untreated subjects, was better preserved in the Darmonala group, thereby supporting overall metabolic stability.³

When evaluating the morphometric parameters, my study revealed that the number of binuclear hepatocytes and mitotic cells was higher in the treated group compared to untreated animals. This, in my personal interpretation, suggests that the extract stimulates cellular proliferation and accelerates regenerative processes. Additionally, the sinusoidal spaces in treated livers were more uniform, and the periportal regions exhibited reduced inflammatory infiltration. These results, based on my laboratory measurements, emphasize the extract's role in preserving the histological integrity of liver tissue under toxic stress conditions. From the perspective of my personal reflections, the protective effects of Darmonala are not limited solely to direct hepatocyte regeneration. The extract also contributed to the normalization of lipid and glucose metabolism, as indicated by the more balanced metabolic profiles observed in treated animals. The combination of structural stabilization, reduced inflammation, and improved metabolic activity highlights the extract's multifaceted hepatoprotective properties.

Furthermore, my experimental data show that although some dystrophic and destructive changes persisted in certain individuals, the overall dynamics of liver recovery were accelerated, and regenerative-compensatory processes were more pronounced. My personal conclusion from these observations is that a holistic approach, combining Darmonala administration with careful monitoring of diet and general health, is essential for effective liver protection and postnatal development.

³ Beshimov, M., & Rustamov, A. (2020). Hepatoprotectors and Medicinal Plants: Results of Experimental Studies. *Scientific Medical Journal*, 14(3), 45–53.

Table 1. Effect of Darmonala Extract on Liver Morphology and Function in Offspring of Rats with Chronic Toxic Hepatitis

No	Experimental Group	Treatment	Key Observations in Hepatocytes	Histological and Morphometric Results	Personal Notes / Interpretation
1	Control Group (Offspring of untreated HT mothers)	No treatment	Dystrophic and destructive changes in hepatocytes, cytoplasmic vacuolization, irregular nuclei	Reduced glycogen content, irregular hepatocyte arrangement, increased inflammatory infiltration	Based on my personal analysis, liver recovery was slow; regeneration was limited
2	Darmonala-treated Group (Offspring of HT mothers)	Darmonala extract	Hepatocyte morphology preserved, reduced vacuolization, more uniform nuclei	Glycogen content maintained, binuclear hepatocytes increased, reduced periportal infiltration	From my personal observations, Darmonala accelerated hepatocyte regeneration and supported metabolic stability
3	Experimental Group (HT model)	Chronic toxic hepatitis induction	Severe hepatocyte deformation, cytoplasmic degeneration, necrosis foci	Significant decrease in mitotic cells, irregular sinusoidal spaces	My personal assessment: toxic hepatitis caused strong structural and functional liver impairment
4	Experimental + Darmonala	HT model + Darmonala	Partial hepatocyte recovery, less necrosis, reduced inflammation	Improved mitotic index, more regular sinusoidal spaces, glycogen partially restored	

In summary, based on my laboratory experiments and analyses, the results clearly indicate that Darmonala extract plays a significant role in mitigating the adverse effects of chronic toxic hepatitis on liver morphology and function. My personal assessment is that this extract not only enhances hepatocyte regeneration but also contributes to maintaining metabolic stability, reducing inflammatory processes, and supporting overall liver health in offspring born to affected mothers. However, according to my personal findings, administration of Darmonala extract contributed to the stabilization of histological and morphometric liver parameters, accelerated hepatocyte regeneration, and reduced inflammatory infiltration. Indeed, my analyses suggest that a comprehensive approach, including natural extracts like Darmonala, proper nutrition, and controlled laboratory observation, supports liver function and maintains metabolic stability. In my personal opinion, further studies on the optimal dosage, timing, and combination of natural hepatoprotective agents are essential to enhance liver recovery and promote natural detoxification processes. These results have practical significance for improving the health of organisms affected by hepatotoxic factors.

References

1. Abdullaeva, S., & Karimov, T. (2022). Medicinal Plants for Supporting Liver Function: Biochemical and Pharmacological Aspects. Tashkent: Science and Technology.
2. Ahmedov, R. (2021). Organic and Natural Methods of Detoxification. Samarkand: University Publishing.
3. Beshimov, M., & Rustamov, A. (2020). Hepatoprotectors and Medicinal Plants: Results of Experimental Studies. Scientific Medical Journal, 14(3), 45–53.
4. Kurbanov, N. (2019). Regeneration of Liver Cells in Laboratory Conditions and the Influence of Medicinal Plants. Biology and Pharmacology, 7(2), 22–31.
5. Mallik, P., Singh, R., & Sharma, S. (2018). Herbal Preparations for Liver Protection: A Review. Journal of Ethnopharmacology, 210, 1–15.
6. Patel, S., & Goyal, A. (2017). Curcumin and Liver Health: Mechanisms and Clinical Implications. Phytotherapy Research, 31(7), 1–12.