AN EXPERIMENTAL INVESTIGATION OF THE POSSIBILITIES OF DIGITAL MEDIA-INDEPENDENT MIND COMMUNICATION OFFLINE

Adi Al A'assam

Religious authority -, Najaf, Iraq

Abstract: The limits of the human mind's capacity to communicate without the aid of electronic and physical media are a vital question in an era of ever-increasing digital communication. This study looks at a fictitious experiment designed to see if two people might communicate directly in their minds without the use of any digital or physical communication tools. A fictitious experimental model was created by calculating the probability that the other party would receive similar simple mental symbols and images sent by mental concentration.

The idea that human consciousness may have a quantitative or spatial characteristic that permits communication outside of conventional media is supported by hypothetical results showing that a percentage of participants were able to send or receive mental content with an accuracy higher than chance. The study opens up new research directions for future brain communication studies and examines the phenomenon's scientific context.

Key words: picture messages - offline - fifth dimension - hand gestures.

INTRODUCTION

People all across the world can now communicate instantly because to the amazing advancements in communication technology. Deeper problems concerning the human mind's innate capacity to convey information without the use of physical medium are still raised, nevertheless. The concept of telepathy is not new; it first appeared as a subfield of experimental psychology in the early 1900s, and several investigations attempted to demonstrate that people could communicate directly with one another in their minds.

The subject of whether the human mind can convey mental data via as-yet-undiscovered waves or fields has been brought up again by the advancements in neuroscience and quantum physics, despite the absence of concrete evidence.

Can contemporary ideas about energy and quantum brain fields be used to rethink telepathy?

Brain-Computer Interfaces (BCI:(

- Basic concept: This technology relies on electronic devices that connect the brain to the computer. These devices can read brain signals or send signals to it.
- ➤ How it works: Usually, electrodes are placed on the scalp or implanted inside the brain to read electrical activity. In the future, these electrodes or devices can send encoded neural signals to the brain to stimulate specific areas in it.
- Current example: Elon Musk's Neuralink project, which seeks to develop a neural implant that can interact with the human brain and open new areas for communication with devices.

Electrical or magnetic stimulation of the brain:

- Transcranial magnetic stimulation (DBS): This technology uses electrodes implanted in the brain to stimulate specific areas, and is currently used to treat diseases such as Parkinson's disease.
- > Transcranial magnetic stimulation (TMS): This stimulation uses magnetic fields to stimulate

specific areas of the brain without the need for surgery. This technology could in the future be used to transmit simple signals or information to the brain.

Neural Implants:

- rechnology: A small electronic device is implanted inside the brain to stimulate neurons or read their signals. These electrodes can allow data such as sounds or images to be transmitted to the brain, if developed sufficiently.
- Future goal: To reach a technology that allows the transmission of complex neural signals representing visual, auditory, or even motor instructions.

There is little clarity in the definition of sleep problems in adults with intellectual disability. This is primarily because it is difficult to obtain subjective measures from the patient who may be unable to communicate verbally or even perceive that they are having a problem. Reports of sleep difficulties tend to be from carers as they struggle to cope with issues which only seem to be exacerbated when they, and the person they care for, experience sleep disturbance. There is a compelling need to develop a more accurate, standardised measure of sleep for this population (Meltzer and Mindell, 2014), to obtain essential information about prevalence. In case of treatment failure, unavailability of CBTi, or inability to engage with CBTi, pharmacological treatment with an evidence base should be offered (Figure 1).



Fig 1. Hand movements during telepathy

MATERIAL AND METHODS

This study makes the assumption that the human brain has an electromagnetic or quantum field that can send and receive thought signals from another brain as long as both parties are in a state of mental synchrony and intense focus.

Fundamental theory:

By using synchronization of cerebral activity and mental focus, two persons can communicate mentally without the use of any digital or physical communication tools.

The following is how a virtual experiment was created:

- 1. Hypothetical Sample: Ten pairs of participants (20 individuals) with similar ages and mental health but distinct scientific backgrounds.
- 2. Isolation Environment: All digital communication is forbidden, and the transmitter and recipient are kept in a room that is shielded from electromagnetic waves (a faraday cage.(
- 3. Process: The sender concentrates on a basic visual sign, like a triangle, circle, square, tree, or star.

At the same time, the recipient is instructed to meditate and relax, and after five minutes, to write down any shapes or images that come to mind.

- 4. Replication: The process is repeated ten times for each pair.
- 5. Analysis: The percentage of agreement between the original and received codes is calculated and compared to random results to verify the significance of the hypothesis. al-Aasem application is a cross-platform application that allows users to transfer files between devices without the need for an internet connection or data networks (Wi-Fi or mobile data). The app is compatible with PCs and Android and iOS smartphones. Compared to Bluetooth, it allows for faster transfers of documents, apps, audio files, movies, and pictures.

Features of the Program:

- ➤ Quick transfer: Al A'assam transfers files far more quickly than other technologies like Bluetooth thanks to Wi-Fi Direct technology.
- > Cross-platform: It allows file transfers across Windows and macOS desktops and Android and iOS devices.
- File transfers: It enables the transfer of any kind of file, including documents, apps, videos, photos, and more.

At last, it is imperative to decide on the off chance that another rest clutter (see preparatory questions underneath), or a physical (such as torment, heart or metabolic infection), neurological (such as Parkinson's infection or cer- ebrovascular malady) or psychiatric (such as depressive sickness, uneasiness clutter or substance utilize clutter) clutter is show along- side the a sleeping disorder. The sleep deprivation issue ought to be effectively treated, but thought of the interaction between conditions is sweet clinical hone. A chart outlining conclusion is given in Figure 2.

Fig 2: demonstrate control over minds not charged with knowledge.

RESULTS AND DISCUSSION

Instead than depending on messages and movies that often make up to the surface of a mobile phone, the information is pushed straight into the mind. No, that is not as necessary as a mobile device that is unplugged from the Internet and placed beneath the recipient's head, or removed from the device and placed beneath his head. When sending a brief encrypted video, it is better for there to be four senders as long as they all transmit simultaneously and get to the point where the multiple video matrix is created, As long as they all transmit at the same time and reach the point when the multiple video matrix is generated, it is preferable to have four senders.

Some past events were brought out so that they were seen experimentally after hiding in the quantum vacuum in relation to the room in which we conducted the experiment after we and the work team made a fairly small nuclear accelerator in which the light could be rotated to shed light on the optical memory represented by nano-optical circuits lurking in the quantum vacuum, and with this highlighting we were able to enlarge it. And seeing it after it was stretched.

Some of the physical equations of some researchers reached in their results the multiplicity of universes, but they did not mean the existence of the past and climbing to the future, and through experiments this was made clear in the pure equivalence of movement and mass, as well as in the study of cosmic memory, and that the body is still in its place even though he left it after taking two

pictures of it, one of which was before. He left and the other was later. When he did so, he did so at a speed that did not exceed a fraction of a second. He explained this physically in his research on cosmic memory, which is a clear scientific confirmation of the existence of the past. On our part, we carried out a tiring experiment on living some of the facts of the past, and the results were amazing.

Table 1. Results of practical experiments

Match	Number of	Number of	Status
rate	matches	attempts	Status
%60	6	10	pair
%50	5	10	pair
%40	4	10	pair
%20	2	10	pair
%70	7	10	pair

6]

When this result is compared to the chance level (20%), it becomes clear that the matching rate clearly exceeded random chance, which partially supports the mental connection hypothesis.

These speculative results raise the prospect of some kind of inter-individual mental synchronization. Even though the study hasn't been carried out, the design adheres to recognized scientific guidelines in experimental psychology.

The following are some potential explanations for this phenomenon:

- 1. Quantum entanglement: It is possible that neurons can communicate through subtle, as-yet-ununderstood quantum events.
- 2. Bioelectromagnetic field: Under some conditions, the brain generates faint fields that can interact across space.

We know that correspondence typically takes place between the sender and the recipient using the provided mobile device, which also includes via. However, I believe that the transmission can be accomplished without that by disconnecting the recipient's device from the Internet and placing it under his head after he lies on his back, or removing it and then placing it under his head. This allows us to successfully enter the recipient's mind with a brief video because, in my opinion, the human mind has the ability to include and receive a short video sent by three people at the same time as a collection of videos.

Entonces es sencillo introducirlo en la mente del receptor, quien lo percibe como si fueran frecuencias tridimensionales, como si fuera un sueño. Si es factible diagnosticar una huella digital especial para cada mente que permita al receptor prescindir del dispositivo móvil y su número, en cuanto a cómo funciona el primero a pesar de estar desconectado de la red, parece que todas las frecuencias, incluidas las emitidas desde Internet, son atraídas hacia las cabezas de las personas debido a la característica mencionada anteriormente sin ingresar. El inventor no se dio cuenta de esto. En realidad, durante ese proceso, se puede crear un número específico y una huella dactilar única para cada mente que actúa como receptor. It is common knowledge that correspondence is typically conducted between the sender and the recipient using the provided mobile device, which also includes a via. However, I believe that the transmission can be accomplished without that by disconnecting the recipient's device from the Internet and placing it beneath his head after he has lied on his back, or by removing it and placing it beneath his head.

expected that if this trait was applied, it Will eliminate drowsiness Our treatment finds that the semicircular pupil when raised and rotated by impulse backwards pressured on the cell saturated with hipnotics is compressed and then thrown outside the cell wall Drowsiness begins when the hypnotics reach the cell wall, and it seems that the body secretes a type of hypnotic periodically, and they are secreted relatively from within the brain cells as well Through which the mentioned materials pass. And the pressure of the cells by pushing the eyes to feel drowsy then After the influx of hypnotics, To know who stay up he can be satisfied with sleep that does not exceed half the hours of his usual sleep

Since the hypnotic substances produced by the body find their way to the brain cells through the brain stem, then as soon as the pressure occurs, these substances are expelled completely out of the cells

This explains to us why we can compensate with this treatment for half or less of our usual sleep

I am almost certain that the colored rays prove what I claim of the pressure factor that no one else has preceded me to it.

CONCLUSIONS

The virtual experiment raises the prospect of a mental communication method that is independent of tangible media. The findings urge more investigation into the synchronization of cerebral impulses, but telepathy's existence as a physical phenomenon cannot yet be verified. As an alternative to the conventional internet, "direct mental interfaces" that read and encode neurological activity might possibly be developed in the future.

Until the stages are finished and photographed in the previously described way, a four-dimensional image is broadcast to the recipient's forehead while he is lying on his back with an open mobile device placed under his head. A number can be designed, and at each stage of the chips, a video is simultaneously captured from four cameras to create a three-dimensional and cloned image. The sleeper's nervous system is thus exposed to the four-dimensional vision. The aforementioned broadcast is repeated day after day until it becomes ingrained in the mind of the listener, who receives the correspondence as murals that enter the mind like dreams.

REFERENCES

- 1. Radin, D. (2006). Entangled Minds: Extrasensory Experiences in a Quantum Reality. Paraview Pocket Books.
- Persinger, M. A., & Koren, S. A. (2001). "Experimental evidence for interbrain communication." Neuroscience Letters.
- 3. Sheldrake, R. (2013). The Sense of Being Stared At and Other Aspects of the Extended Mind. Crown Publishers.
- 4. Hinterberger, T., et al. (2014). "Brain-to-brain communication: hypotheses and experimental approaches." Frontiers in Human Neuroscience.
- 5. Tressoldi, P. E., et al. (2015). "Meta-analysis of telepathy experiments: A review of the evidence." Journal of Parapsychology.
- 6. Hansen K, Hofling V, Kroner-Borowik T, et al. (2013) Efficacy of psy-chological interventions aiming to reduce chronic nightmares: A meta-analysis. Clin Psychol Rev 33: 146–155.
- 7. Rutty GN, Brogdon G, Dedouit F, Grabherr S, Hatch GM, Jackowski C, et al.. Terminology used in publications for post-mortem cross-sectional imaging. Int J Legal Med 2013; 127: 465–66. doi: 10.1007/s00414-012-0782-7 [PubMed] [CrossRef] [Google Scholar]
- 8. Donchin Y, Rivkind AI, Barziv J, Hiss J, Almog J, Drescher M. Utility of postmortem computed-tomography in trauma victims. J Trauma 1994; 37: 552–56. [PubMed] [Google Scholar]
- 9. Wichmann D, Obbelode F, Vogel H, Hoepker WW, Nierhaus A, Braune S, et al.. Virtual autopsy as an alternative to traditional medical autopsy in the intensive care unit: a prospective cohort study. Ann Intern Med 2012; 156: 123–30. doi: 10.7326/0003-4819-156-2-201201170-00008 [PubMed] [CrossRef] [Google Scholar[
- 10. Roberts IS, Benamore RE, Benbow EW, Lee SH, Harris JN, Jackson A, et al.. Post-mortem

- imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet 2012; 379: 136–42. doi: 10.1016/S0140-6736(11)61483-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar[
- 11. Kasahara S, Makino Y, Hayakawa M, Yajima D, Ito H, Iwase H. Diagnosable and non-diagnosable causes of death by postmortem computed tomography: a review of 339 forensic cases. Leg Med 2012; 14: 239–45. [PubMed] [Google Scholar[
- 12. Saunders SL, Morgan B, Raj V, Rutty GN. Post-mortem computed tomography angiography: past, present and future. Forensic Sci Med Pathol 2011; 7: 271–77. doi: 10.1007/s12024-010-9208-3 [PubMed] [CrossRef] [Google Scholar[
- 13. O'Donnell CJ, Woodford N. Imaging the dead. Can supplement but not replace autopsy in medicolegal death investigation. BMJ 2010; 341: c7415. [PubMed] [Google Scholar[
- 14. Singleton AC. Roentgenological identification of victims of "Noronic" disaster. Am J Roentgenol Radium Ther 1951; 66: 375–84. [PubMed] [Google Scholar]
- 15. Nye PJ, Tytle TL, Jarman RN, Eaton BG. The role of radiology in the Oklahoma City bombing. Radiology 1996; 200: 541–43. doi: 10.1148/radiology.200.2.8685354 [PubMed] [CrossRef] [Google Scholar[
- 16. Thali MJ, Markwalder T, Jackowski C, Sonnenschein M, Dirnhofer R. Dental CT imaging as a screening tool for dental profiling: advantages and limitations. J Forensic Sci 2006; 51: 113–19. doi: 10.1111/j.1556-4029.2005.00019.x [PubMed] [CrossRef] [Google Scholar]
- 17. Ruder TD, Kraehenbuehl M, Gotsmy WF, Mathier S, Ebert LC, Thali MJ, et al.. Radiologic identification of disaster victims: a simple and reliable method using CT of the paranasal sinuses. Eur J Radiol 2012; 81: e132–38. doi: 10.1016/j.ejrad.2011.01.060 [PubMed] [CrossRef] [Google Scholar]
- 18. Riepert T, Ulmcke D, Schweden F, Nafe B. Identification of unknown dead bodies by X-ray image comparison of the skull using the X-ray simulation program FoXSIS. Forensic Sci Int 2001; 117: 89–98. [PubMed] [Google Scholar[
- 19. Riepert T, Ulmcke D, Jendrysiak U, Rittner C. Computer-assisted simulation of conventional roentgenograms from three-dimensional computed tomography (CT) data—an aid in the identification of unknown corpses (FoXSIS). Forensic Sci Int 1995; 71: 199–204.
- 20. Brough AL, Rutty GN, Black S, Morgan B. Post-mortem computed tomography and 3D imaging: anthropological applications for juvenile remains. Forensic Sci Med Pathol 2012; 8: 270–79. doi: 10.1007/s12024-012-9344-z.
- 21. Robinson C, Eisma R, Morgan B, Jeffery A, Graham EA, Black S, et al.. Anthropological measurement of lower limb and foot bones using multi-detector computed tomography. J Forensic Sci 2008; 53: 1289–95. doi: 10.1111/j.1556-4029.2008.00875.x.