

MOLECULAR MECHANISMS OF SKELETAL MUSCLE ADAPTATION DURING PHYSICAL TRAINING AND AGING

Sarkisova Victoria Vladimirovna

Senior Lecturer of Anatomy, Pathological Anatomy, Clinical Anatomy and Histology Department of the Zarmed University

Pardaeva Shahzodaxon Ibrohim qizi, Yashinova Dilnurabegim Bagirovna, Xamroev Murodillo Abdulloivich

3rd year student of Medicine faculty Of the Zarmed University

Annotation: This article provides an in-depth analysis of the molecular processes that regulate skeletal muscle adaptation under two contrasting physiological conditions: physical training and aging. It explores how cellular signaling pathways, gene expression, mitochondrial biogenesis, and protein turnover contribute to muscle plasticity, hypertrophy, and maintenance. The study highlights the roles of key molecular regulators such as AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and myostatin in controlling muscle mass and performance. The interaction between exercise-induced signaling and age-related molecular decline is examined to understand how training mitigates sarcopenia and functional deterioration. These insights form a scientific foundation for developing strategies to preserve muscle health across the lifespan. This article investigates the intricate molecular mechanisms underlying skeletal muscle adaptation in response to physical training and the degenerative effects of aging. The research emphasizes how distinct cellular signaling pathways, transcriptional regulators, and mitochondrial processes influence the dynamic remodeling of muscle fibers. Physical activity activates molecular cascades that enhance energy metabolism, improve protein synthesis, and stimulate mitochondrial renewal, while aging triggers a progressive decline in these same pathways. The study aims to elucidate how exercise reprograms molecular responses to counteract sarcopenia, oxidative damage, and metabolic inefficiency. By integrating recent advances in molecular biology and physiology, this work provides a detailed perspective on how targeted interventions can preserve muscle performance and metabolic resilience throughout the human lifespan.

Key words: skeletal muscle, adaptation, physical training, aging, molecular mechanisms, mTOR, AMPK, PGC-1α, sarcopenia, mitochondrial biogenesis

Introduction:

Skeletal muscle is a highly dynamic tissue capable of remarkable adaptation to environmental and physiological stimuli. It responds to mechanical load, metabolic stress, and hormonal influences by altering its structure and function to meet energy and performance demands. Physical training stimulates molecular signaling cascades that enhance muscle protein synthesis, increase mitochondrial density, and improve oxidative capacity. Conversely, aging is associated with gradual loss of muscle mass, strength, and metabolic efficiency—a condition known as sarcopenia. The decline results from reduced anabolic signaling, impaired mitochondrial function, chronic inflammation, and decreased regenerative capacity. Understanding the molecular mechanisms that govern muscle adaptation during both exercise and aging is essential for designing interventions to maintain mobility, strength, and metabolic health. This paper examines the cellular signaling pathways responsible for muscle remodeling, the molecular crosstalk between anabolic and catabolic processes, and the impact of exercise in counteracting the degenerative changes associated with aging. Skeletal muscle plays a fundamental role in maintaining movement, posture, and metabolic balance. Its structure and function

are constantly remodeled in response to mechanical load, nutritional status, and physiological stress. During physical training, muscle fibers undergo extensive biochemical and structural transformations that improve contractile strength and metabolic efficiency. These adaptations are governed by molecular networks involving nutrient sensing, intracellular energy regulation, and gene expression modulation. Key signaling pathways such as AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) coordinate protein synthesis, mitochondrial biogenesis, and oxidative metabolism. In contrast, aging progressively impairs these molecular systems, leading to muscle mass loss, reduced regenerative capacity, and metabolic decline. This age-related deterioration, termed sarcopenia, is influenced by chronic inflammation, oxidative stress, hormonal imbalance, and mitochondrial dysfunction. The interplay between exercise-induced molecular activation and age-related molecular suppression defines the trajectory of muscle health. Understanding how physical training modulates molecular pathways disrupted by aging provides essential insight into strategies for prolonging muscle function and improving quality of life in older adults.

Materials and Methods:

This research is based on a comprehensive review of current scientific literature obtained from PubMed, ScienceDirect, and Google Scholar, covering the years 2012–2025. The selection criteria included studies addressing molecular and cellular aspects of skeletal muscle adaptation, protein signaling pathways, mitochondrial function, and age-related muscle decline. Keywords such as "skeletal muscle adaptation," "mTOR pathway," "PGC-1\alpha," "sarcopenia," and "exercise signaling" were used. Both experimental and clinical research articles were reviewed to ensure a balanced understanding of mechanisms observed in animal models and humans. Comparative analysis was performed between studies on resistance and endurance training to identify differential activation of signaling pathways. Data were synthesized to describe the interconnected molecular events that facilitate adaptation and the factors that hinder muscle maintenance during aging.

Results: The collected data reveal that skeletal muscle adaptation is regulated by complex molecular interactions that respond to training stimuli and age-related stress. During exercise, mechanical loading activates the mTOR signaling pathway, which promotes protein synthesis and muscle hypertrophy. Concurrently, endurance exercise stimulates AMPK and PGC-1\alpha pathways, enhancing mitochondrial biogenesis, oxidative metabolism, and fatigue resistance. These pathways operate in balance—mTOR driving anabolic growth, while AMPK and PGC-1α promote energy efficiency and endurance. Aging, however, disrupts this balance through reduced anabolic sensitivity, mitochondrial dysfunction, and chronic low-grade inflammation. Studies show that aged muscle exhibits diminished mTOR activation, decreased PGC-1a expression, and increased myostatin levels, leading to muscle atrophy and reduced regenerative potential. Regular physical activity partially restores these signaling pathways, improving mitochondrial dynamics and reducing oxidative stress. Furthermore, exercise upregulates antioxidant enzymes, increases autophagy efficiency, and enhances insulin sensitivity, all of which contribute to muscle preservation. The results confirm that exercise acts as a molecular modulator that counteracts the detrimental effects of aging by reactivating suppressed signaling pathways and promoting muscle repair. The synthesis of reviewed studies demonstrates that skeletal muscle adaptation is orchestrated by a complex molecular interplay between anabolic and catabolic processes. During resistance and endurance training, molecular signaling is dynamically regulated to match the type of stimulus. Mechanical overload triggers mTOR activation, which promotes translation initiation and myofibrillar protein synthesis, resulting in hypertrophy. Simultaneously, metabolic stress during aerobic exercise activates AMPK, stimulating glucose uptake, fatty acid oxidation, and mitochondrial biogenesis through upregulation of PGC-1a. This coordination allows muscle fibers to enhance both strength and endurance capabilities. In contrast, aging disrupts these molecular circuits. Decreased mTOR signaling reduces anabolic sensitivity to nutrients and exercise, while chronic activation of inflammatory pathways like NF-κB accelerates protein degradation. Mitochondrial dysfunction manifests through reduced PGC-1α expression, impaired oxidative phosphorylation, and accumulation of reactive oxygen species, leading to cellular damage. Myostatin levels, a key inhibitor of muscle growth, increase with age, further suppressing regeneration. However, consistent physical activity restores part of this molecular balance by activating autophagy, enhancing antioxidant defense, and improving mitochondrial turnover. Exercise rejuvenates aged muscle by stimulating satellite cell proliferation, reestablishing protein synthesis efficiency, and normalizing the redox environment. These findings indicate that molecular plasticity remains partially reversible, even in advanced age, provided that the proper mechanical and metabolic stimuli are applied through structured physical training.

Discussion:

The adaptive response of skeletal muscle depends on the fine-tuned regulation of molecular signaling networks that control protein synthesis, energy metabolism, and cellular repair. The mTOR pathway is central to muscle growth and responds primarily to mechanical stimuli and amino acid availability. Its activation leads to phosphorylation of downstream effectors such as p70S6 kinase and 4E-BP1, which enhance translational efficiency and muscle fiber hypertrophy. Conversely, AMPK serves as an energy sensor, activated during metabolic stress to promote catabolic processes and mitochondrial function. The interplay between mTOR and AMPK determines whether the muscle cell prioritizes growth or endurance adaptation. PGC-1α acts as a transcriptional coactivator that regulates genes involved in mitochondrial biogenesis and oxidative phosphorylation, making it essential for endurance-related adaptations. Aging disrupts these processes through mitochondrial DNA mutations, impaired autophagy, and hormonal changes such as reduced testosterone and growth hormone levels. Myostatin, a negative regulator of muscle growth, becomes overexpressed with age, further suppressing protein synthesis. However, consistent physical training, particularly combined resistance and aerobic exercise, reactivates suppressed pathways, reduces inflammation through decreased NF-κB signaling, and enhances mitochondrial turnover. Emerging evidence also suggests that exercise-induced extracellular vesicles and myokines such as irisin and IL-6 mediate systemic adaptations that protect against metabolic decline. Therefore, molecular adaptation in skeletal muscle reflects a balance between anabolic and catabolic forces influenced by lifestyle, genetics, and age. Skeletal muscle adaptation emerges from the integration of multiple molecular pathways that sense and respond to energy status, mechanical load, and oxidative stress. The mTOR pathway functions as the central anabolic regulator, stimulating protein synthesis and cellular growth when energy and amino acids are abundant. AMPK acts as an energy sensor that promotes catabolic processes to restore energy balance under metabolic stress, ensuring cellular survival during exercise. PGC-1a serves as a master regulator of mitochondrial biogenesis, coordinating transcriptional activation of genes responsible for oxidative metabolism. The dynamic balance between these pathways determines whether muscle tissue undergoes hypertrophy, endurance adaptation, or atrophy. Aging shifts this equilibrium toward catabolism due to mitochondrial deterioration, impaired nutrient sensing, and chronic inflammatory signaling. This results in diminished regenerative capacity and functional decline. Yet, exercise introduces a compensatory mechanism, reactivating suppressed pathways and stimulating mitochondrial renewal. Regular training reduces pro-inflammatory cytokines, increases insulin sensitivity, and enhances neuromuscular efficiency. Additionally, exercise-induced myokines such as irisin and interleukin-15 have systemic effects, promoting fat oxidation and bone density maintenance while counteracting metabolic diseases. The interplay between mechanical tension, energy metabolism, and gene expression exemplifies how physical activity serves as a biological stimulus capable of reprogramming aging muscle at the molecular level. Consequently, these mechanisms explain why exercise remains the most effective non-pharmacological intervention for maintaining muscle integrity, slowing cellular aging, and preventing metabolic disorders.

Conclusion:

Skeletal muscle adaptation during physical training and aging is governed by interconnected molecular pathways that regulate protein turnover, energy metabolism, and cellular repair. Exercise stimulates mTOR, AMPK, and PGC- 1α signaling, promoting hypertrophy, mitochondrial biogenesis, and enhanced metabolic efficiency. Aging, in contrast, impairs these pathways through oxidative stress, inflammation, and hormonal decline, resulting in muscle atrophy and weakness. Nevertheless, regular physical activity serves as a potent molecular intervention capable of reactivating anabolic processes

and preserving muscle health. Understanding these molecular mechanisms provides a foundation for therapeutic strategies aimed at preventing sarcopenia and maintaining physical function in the elderly. Targeting key regulators such as mTOR, PGC- 1α , and myostatin may offer new possibilities for enhancing muscle longevity and overall health span. The molecular adaptation of skeletal muscle represents a finely tuned balance between anabolic and catabolic signaling networks influenced by physical activity and the aging process. Training activates mTOR, AMPK, and PGC- 1α pathways, leading to increased protein synthesis, enhanced mitochondrial function, and improved metabolic regulation. Aging, conversely, is characterized by mitochondrial decay, increased oxidative stress, and downregulation of these critical molecular mediators. Nonetheless, exercise possesses the unique ability to reverse or mitigate many age-associated declines by reactivating signaling cascades and restoring cellular homeostasis. Maintaining consistent physical activity throughout life strengthens molecular resilience, preserves muscle function, and extends physiological health span. A deep understanding of these molecular mechanisms paves the way for targeted therapeutic strategies aimed at enhancing muscle plasticity, preventing sarcopenia, and promoting longevity through integrative approaches that combine exercise, nutrition, and molecular modulation.

References:

- 1. Egan, B., & Zierath, J.R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. *Cell Metabolism*, 17(2), 162–184.
- 2. Phillips, S.M. (2017). Resistance exercise and the molecular control of muscle hypertrophy. *Sports Medicine*, 47(1), 13–23.
- 3. Hood, D.A., Tryon, L.D., Carter, H.N., Kim, Y., & Chen, C.C. (2016). Unraveling the mechanisms regulating muscle mitochondrial biogenesis. *Biochimica et Biophysica Acta*, 1862(1), 70–80.
- 4. Ghosh, S., & Lanza, I.R. (2019). The role of mitochondria in muscle aging. *Journal of Clinical Investigation*, 129(10), 3613–3622.
- 5. Sandri, M. (2013). Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. *Nature Reviews Molecular Cell Biology*, 14(1), 36–50.
- 6. Hwee, D.T., et al. (2014). Myostatin and muscle aging: Molecular regulation and therapeutic potential. *Frontiers in Physiology*, 5, 11–24.
- 7. Baar, K. (2014). Nutrition and the adaptation to endurance training. *Sports Medicine*, 44(Suppl 1), S5–S12.
- 8. Joseph, A.M., et al. (2016). The role of PGC-1α in exercise and aging: Connecting metabolism and regeneration. *Ageing Research Reviews*, 27, 67–76.
- 9. Wilkinson, D.J., et al. (2018). Age-related anabolic resistance and exercise. *Frontiers in Physiology*, 9, 643.
- 10. Lanza, I.R., & Nair, K.S. (2020). Muscle mitochondrial function and aging: The role of exercise as a countermeasure. *Aging Cell*, 19(8), e13114.