

The Structural Differences Between the Histological Layers of the Kidney and their Alterations Under Pathological Conditions

Ergasheva Gulshan Tokhirovna

Assistant of the Department of Clinical Sciences Asian International University, Bukhara, Uzbekistan

Abstract

Histological alterations observed in diabetic kidney disease (DKD) comprise a wide range of structural changes, including mesangiolysis, expansion of the mesangial matrix, proliferation of mesangial cells, thickening of the glomerular basement membrane, podocyte depletion, effacement of foot processes, and hyalinosis of glomerular arterioles. In addition, interstitial fibrosis, tubular atrophy, and glomerulomegaly are common findings. Importantly, histopathological evidence of DKD may appear even when clinical indicators are still within normal limits — for example, in individuals with normal urinary albumin levels and preserved glomerular filtration rate. Over time, histological damage tends to progress, while clinical parameters may remain unchanged.

Interestingly, structural abnormalities in DKD can improve after successful pancreas transplantation, which restores metabolic control. Insulin resistance plays a significant role in the pathogenesis of DKD and is linked with its clinical expressions such as kidney enlargement, glomerular hyperfiltration, albuminuria, and progressive renal failure. This resistance is also believed to contribute to the underlying histological damage. In patients newly diagnosed with type 1 diabetes — who initially lack insulin resistance — morphological changes are typically absent but tend to emerge as insulin resistance develops later. Conversely, in type 2 diabetes, structural lesions of DKD often precede the clinical onset of the disease.

A number of other insulin-resistant conditions — including aging, obesity, acromegaly, lipodystrophy, cystic fibrosis, insulin receptor abnormalities, and Alström syndrome — also display similar renal clinical and structural abnormalities, such as glomerulomegaly, focal segmental glomerulosclerosis, and C3 glomerulopathy. These conditions may share a common mechanism involving decreased synthesis of factor H binding sites (e.g., heparan sulfate), resulting in unregulated complement activation. Notably, Alström syndrome is characterized by systemic interstitial fibrosis that closely resembles that seen in diabetic patients.

Keywords: aging; Alström syndrome; C3 glomerulopathy; cystic fibrosis; Diabetes; factor H; focal glomerulosclerosis; herparan sulfate; HIV; insulin receptor; lipodystrophy; obesity.

Introduction: The kidney is a paired organ that maintains the internal homeostasis of the body through filtration, secretion, and reabsorption. It regulates blood pressure, osmotic balance, and the excretion of metabolic waste products. Histologically, the kidney consists of three main layers:

Renal cortex – responsible for filtration and initial stages of urine formation.

Renal medulla – controls concentration of urine and osmotic regulation.

Renal pelvis – serves as a collecting and conducting structure for urine.

Each layer contains unique cellular structures, capillary networks, and extracellular components that determine its specific function. Damage to any of these layers leads to significant alterations in the structure and function of the kidney.

Histological Structure of the Kidney Renal Cortex The renal cortex forms the outer portion of the kidney and appears granular under the microscope due to the presence of numerous renal corpuscles and convoluted tubules.

Main structures:

Renal corpuscle (Malpighian body): Consists of Bowman's capsule and a tuft of capillaries known as the glomerulus. The capsule has a parietal layer of simple squamous epithelium and a visceral layer composed of podocytes that wrap around the glomerular capillaries.

Proximal convoluted tubule (PCT): Lined by cuboidal epithelial cells with dense brush borders (microvilli), facilitating absorption of glucose, amino acids, and ions.

Distal convoluted tubule (DCT): Has fewer microvilli, smaller lumen, and is mainly responsible for ion exchange under hormonal control.

Vascular features:

The cortex is richly supplied with peritubular capillaries derived from efferent arterioles, ensuring efficient reabsorption.

Renal Medulla

The renal medulla appears striated due to parallel arrangements of tubules and vessels.

Main structures:

Loops of Henle: Consist of descending and ascending limbs, essential for countercurrent exchange and urine concentration.

Collecting ducts: Lined by columnar epithelium; under the influence of antidiuretic hormone (ADH), they reabsorb water, thus concentrating urine.

Vasa recta: Straight capillaries running parallel to the loops of Henle; play a vital role in maintaining the osmotic gradient.

Functional note:

The medulla's high osmolarity facilitates water reabsorption, contributing to body fluid regulation.

Renal Pelvis

The renal pelvis is a funnel-shaped cavity that collects urine from the papillary ducts and channels it into the ureter.

Histological composition:

Mucosa: Lined by transitional (urothelial) epithelium, allowing distension.

Submucosa: Contains connective tissue with elastic fibers and blood vessels.

Muscular layer: Consists of smooth muscle fibers arranged in spiral layers, responsible for peristaltic contractions.

Adventitia: Outermost connective tissue connecting the pelvis to surrounding fat.

Pathological Alterations in the Kidney Layers

3.1. Glomerular Disorders (Cortex)

a. Glomerulonephritis:

Characterized by hypercellularity, thickened basement membranes, and infiltration by inflammatory cells.

Crescent formation in Bowman's space indicates severe injury.

Causes include immune complex deposition (post-streptococcal) or autoimmune reactions (lupus nephritis).

b. Diabetic Nephropathy:

Mesangial expansion, GBM thickening, and nodular glomerulosclerosis (Kimmelstiel-Wilson lesion) are typical features.

Chronic hyperglycemia leads to non-enzymatic glycosylation of basement membrane proteins.

Arterioles exhibit hyalinosis, and tubular atrophy is common.

Tubular Disorders (Cortex and Medulla)

a. Acute Tubular Necrosis (ATN):

Caused by ischemia or nephrotoxic agents.

Loss of brush border, epithelial necrosis, and luminal cast formation occur.

Regeneration possible in reversible stages, with mitotic activity in surviving cells.

b. Tubulointerstitial Nephritis:

Characterized by edema, lymphocytic infiltration, and fibrosis in the interstitium.

Often drug-induced or secondary to infections (e.g., antibiotics, NSAIDs).

Medullary Disorders

a. Pyelonephritis:

Bacterial infection primarily affecting the renal medulla and pelvis.

Acute cases show neutrophilic infiltration and tubular destruction, while chronic cases lead to fibrosis and scarring.

Papillary necrosis may develop in severe infections.

b. Papillary Necrosis:

Commonly associated with diabetes mellitus, analgesic abuse, or sickle cell anemia.

Histologically shows coagulative necrosis of papillae and calcification in chronic forms.

Pelvic Disorders

a. Chronic Pyelitis / Pyelonephritis:

Persistent infection results in thickened urothelium, fibrosis of submucosa, and muscular hypertrophy.

Leads to functional obstruction and hydronephrosis.

b. Urothelial Carcinoma:

Malignant transformation of transitional epithelium in the renal pelvis.

Histological features include cellular atypia, loss of polarity, and invasion into submucosa.

Correlation Between Structure and Function

Each renal layer has a structure specifically adapted to its physiological role:

The cortex handles filtration and reabsorption due to the high density of glomeruli and PCTs.

The medulla maintains osmotic gradients for water conservation.

The pelvis functions as a flexible conduit.

When pathology disturbs these architectures, functional impairment follows. For example:

Glomerular thickening reduces filtration rate.

Tubular necrosis disrupts reabsorption and acid-base balance.

Medullary fibrosis impairs urine concentration.

Pelvic obstruction increases intrarenal pressure, causing secondary cortical atrophy.

Diagnostic and Clinical Significance

Histological examination of kidney biopsies is the gold standard for diagnosing renal diseases.

Light microscopy reveals cellular architecture and deposits.

Electron microscopy detects ultrastructural alterations (e.g., podocyte effacement).

Immunofluorescence identifies immune complex deposition.

Understanding the histological changes in each kidney layer aids clinicians in distinguishing between primary glomerular, tubulointerstitial, and vascular nephropathies, which require different therapeutic strategies.

Conclusion

The kidney's histological organization into cortex, medulla, and pelvis ensures its complex physiological functions. Each layer possesses distinctive structures that are selectively vulnerable to pathological insults. Morphological changes in these layers serve as early markers of renal disease progression. Comprehensive knowledge of renal histology and pathology enables accurate diagnosis, prognosis, and the development of novel nephroprotective therapies.

References

- 1. Junqueira, L. C., & Carneiro, J. (2022). Basic Histology: Text & Atlas (16th ed.). McGraw-Hill Education.
- 2. Kumar, V., Abbas, A. K., & Aster, J. C. (2022). Robbins and Cotran Pathologic Basis of Disease (10th ed.). Elsevier.
- 3. Fioretto, P., & Mauer, M. (2007). Histopathology of diabetic nephropathy. Seminars in Nephrology, 27(2), 195–207.
- 4. Ergasheva, G. (2025). POLYCYSTIC OVARY SYNDROME: A COMPREHENSIVE OVERVIEW AND CURRENT TREATMENT APPROACHES. Modern Science and Research, 4(4), 937-944.
- 5. Ergasheva, G. (2025). ACROMEGALY: A SEVERE NEUROENDOCRINE DISORDER WITH MULTISYSTEM MANIFESTATIONS. Modern Science and Research, 4(3), 1123-1131.
- 6. Ergasheva, G. (2024). THE ROLE OF CORRECTIONAL PEDAGOGY IN ORGANIZING THE EDUCATION OF CHILDREN WITH DISABILITIES. Ethiopian International Journal of Multidisciplinary Research, 11(06), 206-207.
- 7. Toxirovna, E. G. (2024). QALQONSIMON BEZ KASALLIKLARIDAN HASHIMOTO TIREODIT KASALLIGINING MORFOFUNKSIONAL O'ZIGA XOSLIGI. Modern education and development, 16(7), 120-135.
- 8. Toxirovna, E. G. (2024). REVMATOID ARTRIT: BO'G'IMLAR YALLIG'LANISHINING SABABLARI, KLINIK BELGILARI, OQIBATLARI VA ZAMONAVIY DAVOLASH YONDASHUVLARI. Modern education and development, 16(7), 136-148.
- 9. Эргашева, Г. Т. (2024). ОЦЕНКА КЛИНИЧЕСКОЙ ЭФФЕКТИВНОСТИ ОРЛИСТАТА У БОЛЬНЫХ ОЖИРЕНИЕМ И АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИЕЙ. Modern education and development, 16(7), 92-105.
- 10. Ergasheva, G. T. (2024). THE SPECIFICITY OFAUTOIMMUNE THYROIDITIS IN PREGNANCY. European Journal of Modern Medicine and Practice, 4(11), 448-453.
- 11. Эргашева, Г. Т. (2024). ИССЛЕДОВАНИЕ ФУНКЦИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ ПРИ ТИРЕОИДИТЕ ХАШИМОТО. Modern education and development, 16(7), 106-119.
- 12. Toxirovna, E. G. (2024). GIPOFIZ ADENOMASINI NAZORAT QILISHDA KONSERVATIV JARROHLIK VA RADIATSIYA TERAPIYASINING UZOQ MUDDATLI SAMARADORLIGI. Modern education and development, 16(7), 79-91.
- 13. ERGASHEVA, G. T. (2024). OBESITY AND OVARIAN INSUFFICIENCY. Valeology: International Journal of Medical Anthropology and Bioethics, 2(09), 106-111.
- 14. Ergasheva, G. T. (2024). Modern Methods in the Diagnosis of Autoimmune Thyroiditis. American Journal of Bioscience and Clinical Integrity, 1(10), 43-50.
- 15. Tokhirovna, E. G. (2024). COEXISTENCE OF CARDIOVASCULAR DISEASES IN PATIENTS WITH TYPE 2 DIABETES. TADQIQOTLAR. UZ, 40(3), 55-62.

- 16. Toxirovna, E. G. (2024). DETERMINATION AND STUDY OF GLYCEMIA IN PATIENTS WITH TYPE 2 DIABETES MELLITUS WITH COMORBID DISEASES. TADQIQOTLAR. UZ, 40(3), 71-77.
- 17. Toxirovna, E. G. (2024). XOMILADORLIKDA QANDLI DIABET KELTIRIB CHIQARUVCHI XAVF OMILLARINI ERTA ANIQLASH USULLARI. TADQIQOTLAR. UZ, 40(3), 63-70.
- 18. Toxirovna, E. G. (2024). QANDLI DIABET 2-TIP VA KOMORBID KASALLIKLARI BO'LGAN BEMORLARDA GLIKEMIK NAZORAT. TADQIQOTLAR. UZ, 40(3), 48-54.
- 19. Tokhirovna, E. G. (2024). MECHANISM OF ACTION OF METFORMIN (BIGUANIDE) IN TYPE 2 DIABETES. JOURNAL OF HEALTHCARE AND LIFE-SCIENCE RESEARCH, 3(5), 210-216.
- 20. Tokhirovna, E. G. (2024). THE ROLE OF METFORMIN (GLIFORMIN) IN THE TREATMENT OF PATIENTS WITH TYPE 2 DIABETES MELLITUS. EUROPEAN JOURNAL OF MODERN MEDICINE AND PRACTICE, 4(4), 171-177.
- 21. Эргашева, Г. Т. (2024). Эффект Применения Бигуанида При Сахарным Диабетом 2 Типа И Covid-19. Research Journal of Trauma and Disability Studies, 3(3), 55-61.
- 22. Toxirovna, E. G. (2024). QANDLI DIABET 2 TUR VA YURAK QON TOMIR KASALLIKLARINING BEMOLARDA BIRGALIKDA KECHISHI. ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 38(7), 202-209.
- 23. Эргашева, Г. Т. (2024). СОСУЩЕСТВОВАНИЕ ДИАБЕТА 2 ТИПА И СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЙ У ПАЦИЕНТОВ. ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 38(7), 219-226.
- 24. Эргашева, Г. Т. (2024). СНИЖЕНИЕ РИСКА ОСЛОЖНЕНИЙ У БОЛЬНЫХ САХАРНЫМ ДИАБЕТОМ 2 ТИПА И СЕРДЕЧНО-СОСУДИСТЫМИ ЗАБОЛЕВАНИЯМИ. Образование Наука И Инновационные Идеи В Мире, 38(7), 210-218.
- 25. Tokhirovna, E. G. (2024). CLINICAL AND MORPHOLOGICAL ASPECTS OF THE COURSE OF ARTERIAL HYPERTENSION. Лучшие интеллектуальные исследования, 12(4), 234-243.
- 26. Tokhirovna, E. G. Studying the Causes of the Relationship between Type 2 Diabetes and Obesity. Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN, 2456-6470.
- 27. Toxirovna, E. G. (2024). ARTERIAL GIPERTENZIYA KURSINING KLINIK VA MORFOLOGIK JIHATLARI. Лучшие интеллектуальные исследования, 12(4), 244-253.
- 28. Эргашева, Г. Т. (2024). НОВЫЕ АСПЕКТЫ ТЕЧЕНИЕ АРТЕРИАЛЬНОЙ ГИПЕРТОНИИ У ВЗРОСЛОГО НАСЕЛЕНИЕ. Лучшие интеллектуальные исследования, 12(4), 224-233.
- 29. Эргашева, Г. Т. (2024). ФАКТОРЫ РИСКА РАЗВИТИЯ САХАРНОГО ДИАБЕТА 2 ТИПА. ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 36(5), 70-74.
- 30. Эргашева, Г. Т. (2024). ОСЛОЖНЕНИЯ САХАРНОГО ДИАБЕТА 2 ТИПА ХАРАКТЕРНЫ ДЛЯ КОГНИТИВНЫХ НАРУШЕНИЙ. TADQIQOTLAR. UZ, 30(3), 112-119.
- 31. Эргашева, Г. Т. (2023). Исследование Причин Связи Диабета 2 Типа И Ожирения. Research Journal of Trauma and Disability Studies, 2(12), 305-311.
- 32. Tokhirovna, E. G. (2024). Risk factors for developing type 2 diabetes mellitus. ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 36(5), 64-69.

- 33. Toxirovna, E. G. (2024). QANDLI DIABET 2-TUR VA O'LIMNI KELTIRIB CHIQARUVCHI SABABLAR. Лучшие интеллектуальные исследования, 14(4), 86-93.
- 34. Tokhirovna, E. G. (2023). Study of clinical characteristics of patients with type 2 diabetes mellitus in middle and old age. Journal of Science in Medicine and Life, 1(4), 16-19.
- 35. Toxirovna, E. G. (2024). GIPERPROLAKTINEMIYA KLINIK BELGILARI VA BEPUSHTLIKKA SABAB BO'LUVCHI OMILLAR. Лучшие интеллектуальные исследования, 14(4), 168-175.
- 36. Toxirovna, E. G. (2023). QANDLI DIABET 2-TUR VA SEMIZLIKNING O'ZARO BOG'LIQLIK SABABLARINI O'RGANISH. Ta'lim innovatsiyasi va integratsiyasi, 10(3), 168-173.
- 37. Saidova, L. B., & Ergashev, G. T. (2022). Improvement of rehabilitation and rehabilitation criteria for patients with type 2 diabetes.
- 38. Эргашева, Г. Т. (2023). Изучение Клинических Особенностей Больных Сахарным Диабетом 2 Типа Среднего И Пожилого Возраста. Central Asian Journal of Medical and Natural Science, 4(6), 274-276.
- 39. Toxirovna, E. G. (2023). O'RTA VA KEKSA YOSHLI BEMORLARDA 2-TUR QANDLI DIABET KECHISHINING KLINIKO-MORFOLOGIK XUSUSIYATLARI. ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 33(1), 164-166.
- 40. Ergasheva, G. T. (2022). QANDLI DIABET BILAN KASALLANGANLARDA REABILITATSIYA MEZONLARINI TAKOMILASHTIRISH. TA'LIM VA RIVOJLANISH TAHLILI ONLAYN ILMIY JURNALI, 2(12), 335-337.
- 41. Ergasheva, G. (2024). METHODS TO PREVENT SIDE EFFECTS OF DIABETES MELLITUS IN SICK PATIENTS WITH TYPE 2 DIABETES. Журнал академических исследований нового Узбекистана, 1(2), 12-16.
- 42. ГТ, Э., & Саидова, Л. Б. (2022). СОВЕРШЕНСТВОВАНИЕ РЕАБИЛИТАЦИОННО-ВОССТАНОВИТЕЛЬНЫХ КРИТЕРИЕВ БОЛЬНЫХ С СД-2 ТИПА. TA'LIM VA RIVOJLANISH TAHLILI ONLAYN ILMIY JURNALI, 2(12), 206-209.
- 43. Toxirovna, E. G. (2025). YURAK-QON TOMIR TIZIMI KASALLIKLARIDA BEMORLAR PARVARISHINING O'ZIGA XOSLIGI. Modern education and development, 20(2), 38-46.
- 44. Ergasheva, G. (2025). PECULIARITIES WHEN ACCOMPANIED BY HYPOTHYROIDISM AND IODINE DEFICIENCY IN PATIENTS WITH ADRENAL GLAND PATHOLOGY. Modern Science and Research, 4(2), 1133-1140.
- 45. Tokhirovna, E. G. (2024). Relationship of the Functional States of the Thyroid and the Reproductive System in Women under Iodine Deficiency. Journal of Science in Medicine and Life, 2(6), 89-94.