

Histopathological Respectives on Asphyxial Deats in Forensic Practice: A Review

Nurmurotov Murodjon Mansur ugli

Asia International University, Bukhara, Uzbekistan

Abstract: Deaths caused by asphyxia remain a persistent challenge in forensic pathology because external and internal observations rarely provide definitive proof that asphyxia is responsible. Microscopic examination of tissues becomes pivotal for revealing underlying lesions and helping differentiate mechanisms such as hanging, ligature strangulation, manual strangulation, smothering, and drowning. This review surveys the histopathological and immunohistochemical patterns frequently encountered in asphyxial fatalities, evaluates their diagnostic usefulness, and outlines the constraints inherent to microscopic assessment in forensic work. Special attention is devoted to pulmonary congestion, edema, petechial hemorrhages, and recently proposed immunohistochemical biomarkers.

Keywords: Asphyxia, Forensic pathology, Histopathology, Pulmonary congestion, Immunohistochemistry

Introduction

Asphyxia denotes a state in which tissue oxygen supply is curtailed, producing hypoxia, hypercapnia, and—if uncorrected—death. In forensic investigations, confirming asphyxia as the proximate cause of death is difficult because unequivocal signs are rare. The term "asphyxial death" encompasses diverse scenarios, including hanging, ligature and manual strangulation, smothering, and drowning. Although the gross examination may uncover facial plethora, cyanosis, petechiae, and pulmonary edema, these manifestations lack specificity and can arise from other lethal processes. Consequently, histopathological analysis becomes vital for affirming antemortem asphyxia and distinguishing among its various forms.

Pathophysiological Background

During asphyxia, interference with oxygen transport or utilization induces systemic hypoxia and metabolic acidosis. Cells shift from aerobic to anaerobic metabolism, generating lactate buildup and cellular swelling. Capillary stasis together with endothelial damage precipitates petechial hemorrhages and vascular congestion, particularly within highly vascular organs such as the lungs, liver, and brain. Mechanical modes of asphyxia additionally inflict localized trauma upon the neck, soft tissues, and airway structures. The ensuing hypoxic–ischemic insult leaves microscopic signatures that, while seldom pathognomonic, can substantiate the diagnosis when correlated with other evidence.

Histopathological Findings in Asphyxial Deaths

1 Pulmonary Findings

The lungs consistently bear the brunt of asphyxial injury. Histology typically reveals vascular engorgement, interstitial and alveolar edema, intra-alveolar hemorrhage, and distended capillaries. In some instances, heightened intrathoracic pressure during struggling or obstructed respiration causes rupture or fragmentation of alveolar septa.

2 Neck and Soft Tissue Changes

In ligature or manual strangulation, microscopic scrutiny of the skin and subcutaneous tissues of the neck often yields crucial clues. Compression-related creasing, dermal hemorrhages, and hemorrhagic foci within the platysma muscle are frequently documented.

3 Liver and Other Organs

Venous stasis and hypoxia commonly lead the liver to display centrilobular congestion and dilated sinusoids. The brain may show vascular engorgement and perivascular edema, occasionally accompanied by petechial hemorrhages. The heart can exhibit subendocardial bleeding or early ischemic alterations secondary to hypoxia.

4 Immunohistochemical and Molecular Markers

Advances in immunohistochemistry and molecular biology have generated potential biomarkers for hypoxia and asphyxia. Investigations have examined P-selectin, E-selectin, HIF- 1α , and surfactant protein A (SP-A), among others. Nevertheless, findings remain inconsistent, and no marker has yet achieved definitive specificity for asphyxia.

Diagnostic Significance and Limitations

Histopathological evaluation materially aids forensic diagnosis by supporting or challenging asphyxia as the cause of death. Even so, most microscopic features lack exclusivity and may overlap with other lethal pathways. Postmortem interval and decomposition further influence the interpretability of findings. Therefore, histology must be interpreted in concert with autopsy observations, toxicological analyses, and scene investigation.

Discussion

The microscopic hallmarks of asphyxia mirror the combined effects of global hypoxia and localized mechanical forces. Pulmonary and cervical tissues remain the richest sources of diagnostic information. Current research seeks to identify objective hypoxia biomarkers to offset the limitations of conventional microscopy.

Conclusion

Histopathological examination remains indispensable to forensic evaluation of asphyxial deaths. Although no single microscopic feature is pathognomonic, the collective presence of pulmonary congestion, edema, and cervical tissue injury can reinforce the diagnosis. Emerging immunohistochemical and molecular markers offer promising avenues for improving diagnostic accuracy.

I rewrote your article's abstract and sections 1–6 in English original phrasing while preserving the intended meaning and emphasis on histopathological findings in asphyxial deaths.

References

- 1. Maeda, H., Zhu, B.-L., Ishikawa, T., Michiue, T. (2013). Intra-alveolar granular deposits of surfactant protein-A as a marker of intense hypoxic stress in asphyxial deaths. Forensic Science International, 229(1–3), 85–90.
- 2. Sharma, K., Singh, N., Kaur, M. (2021). Histopathological study of pulmonary changes in mechanical asphyxia. Indian Journal of Forensic Medicine & Toxicology, 15(4), 122–127.
- 3. Singh, D., Kumar, A., Sharma, M. (2018). Histopathological evaluation of neck tissues in cases of hanging and strangulation. IJIRMS, 3(8), 1850–1855.
- 4. Maeda, H., Michiue, T. (2019). Forensic pathology of mechanical asphyxia: An overview. Forensic Science, Medicine, and Pathology, 15(2), 209–220.
- 5. Karger, B. (2020). Asphyxial deaths: Pathophysiology, diagnosis, and forensic implications. Legal Medicine, 47, 101–109.
- 6. Palmiere, C., Egger, C., Mangin, P. (2013). Immunohistochemistry in forensic practice: A review of its applications. Forensic Science Research, 58(4), 183–190.
- 7. Madea, B. (2015). Asphyxia: Pathophysiology and forensic diagnosis. In: Handbook of Forensic Medicine, 2nd ed., Wiley-Blackwell, 291–307.

