

Assessment of Immune Status and Risk of Oral Candidiasis Development in Patients With Leukemia

Orifkhujayeva Mekhriniso Valijonovna

Basic Doctoral Student (PhD Candidate) at Bukhara State Medical Institute

Norova Mavjuda Baxodurovna

Associate Professor, Department of Therapeutic Dentistry, Bukhara State Medical Institute, DSc

Abstract: Oral candidiasis is a common opportunistic infection in patients with leukemia due to compromised immune function. This review aims to evaluate the relationship between immune status and the risk of developing oral candidiasis in these patients. Neutropenia, impaired cellular immunity, and disruption of oral microbiota increase susceptibility to Candida colonization and infection. Understanding these mechanisms is essential for early diagnosis, effective prevention, and optimal therapeutic interventions.

Keywords: Leukemia; oral candidiasis; immune status; immunosuppression; risk assessment.

Leukemia, a malignant disorder of the hematopoietic system, is characterized by uncontrolled proliferation of abnormal white blood cells. These abnormal cells compromise the immune system, leading to increased susceptibility to a variety of opportunistic infections. Among these, oral candidiasis is one of the most prevalent and clinically significant infections. The oral cavity represents a dynamic microbial ecosystem in which bacteria, fungi, and host immune defenses maintain a delicate balance. In leukemia patients, this balance is often disrupted due to the disease itself, chemotherapy, radiotherapy, and other immunosuppressive interventions. As a result, the colonization and overgrowth of Candida species are facilitated, leading to the development of clinical infections. Oral candidiasis not only causes discomfort, pain, and functional limitations such as difficulty in eating and swallowing but can also serve as a source of systemic dissemination, especially in severely immunocompromised patients. Understanding the mechanisms by which immune suppression predisposes leukemia patients to oral candidiasis is crucial for risk stratification, early diagnosis, prophylactic measures, and effective management.

The pathogenesis of oral candidiasis in leukemia is closely related to the profound immunosuppression observed in these patients. Leukemia results in quantitative and qualitative defects of neutrophils, lymphocytes, and monocytes, leading to impaired innate and adaptive immune responses. Neutrophils, which play a pivotal role in controlling fungal infections, are often reduced in number due to both disease-related bone marrow suppression and chemotherapy-induced myelosuppression. Furthermore, the functional capacity of neutrophils to migrate, phagocytose, and kill fungal cells is compromised. T-cell mediated immunity, particularly CD4+ T-helper cells, is also impaired, reducing the production of cytokines such as interferon-gamma (IFN-γ) and interleukin-17 (IL-17), which are essential for mucosal defense against Candida species. B-cell function may be altered, affecting antibody-mediated immunity, while mucosal epithelial integrity may be weakened, allowing easier adherence and penetration of fungal organisms.

The oral cavity harbors a complex microbiota, including commensal bacteria and fungi, which normally prevent pathogenic overgrowth through competitive inhibition and immunomodulation. In leukemia patients, this microbial ecosystem is disrupted due to chemotherapy, broad-spectrum antibiotics, poor oral hygiene, xerostomia, and nutritional deficiencies. These changes create an environment conducive to the overgrowth of Candida albicans and other non-albicans Candida species. Studies have shown that shifts in the oral microbiota composition correlate with increased fungal burden and risk of clinical candidiasis. Biofilm formation on mucosal surfaces and dental appliances

further enhances fungal persistence and resistance to antifungal therapy. Consequently, leukemia patients often experience recurrent or chronic oral candidiasis, which is difficult to eradicate without targeted therapeutic interventions.

Oral candidiasis in leukemia patients can present in various clinical forms. The pseudomembranous form is characterized by white, creamy plaques that can be scraped off, revealing erythematous underlying mucosa. Erythematous (atrophic) candidiasis manifests as red, painful mucosa, often associated with burning sensations and taste alterations. Chronic hyperplastic candidiasis appears as persistent, non-removable white lesions, which carry a potential risk for malignant transformation in some cases. Other manifestations include angular cheilitis and denture-related stomatitis. Symptoms such as dysphagia, pain during mastication, oral burning, and halitosis can significantly impact nutrition and quality of life. Importantly, the severity of these clinical manifestations often correlates with the degree of immunosuppression, neutropenia, and mucosal barrier compromise.

Multiple factors contribute to the development of oral candidiasis in leukemia patients. Chemotherapy and radiotherapy are major risk factors due to their myelosuppressive and mucotoxic effects. Broad-spectrum antibiotics disrupt the normal oral microbiota, promoting fungal overgrowth. Nutritional deficiencies, particularly protein-energy malnutrition and vitamin deficiencies, impair immune function. Xerostomia and salivary alterations reduce mechanical clearance and antimicrobial properties of saliva. The presence of oral devices such as dentures can act as biofilm reservoirs. Furthermore, advanced age, diabetes, and coexisting systemic illnesses exacerbate susceptibility. Recognizing these risk factors allows clinicians to identify high-risk patients and implement preventive strategies such as antifungal prophylaxis, improved oral care, and immune support.

Immune Status Assessment and Its Importance

Evaluating the immune status in leukemia patients is critical for predicting the risk of oral candidiasis. Parameters such as absolute neutrophil count, lymphocyte subsets, immunoglobulin levels, and cytokine profiles provide insights into the patient's ability to control fungal colonization. Regular monitoring allows timely identification of patients at high risk, enabling early interventions. Some studies have suggested that neutrophil recovery post-chemotherapy is associated with decreased incidence of oral candidiasis, highlighting the importance of immune restoration in prevention. Immunomodulatory therapies, such as growth factors and cytokine supplementation, may further reduce susceptibility in selected patients.

The risk of oral candidiasis in leukemia patients is multifactorial. Immunosuppression, whether due to the disease itself or chemotherapy, is a primary driver. Neutropenia reduces the ability to clear Candida, while T-cell dysfunction impairs mucosal immune surveillance. Disruption of oral microbiota further facilitates Candida overgrowth and biofilm formation. Clinical manifestations can range from asymptomatic colonization to painful erythematous or pseudomembranous lesions. Early recognition and risk stratification are vital for implementing prophylactic antifungal therapy, maintaining oral hygiene, and minimizing systemic complications. Monitoring immune markers such as neutrophil counts, lymphocyte subsets, and cytokine levels can guide clinicians in predicting susceptibility and tailoring interventions.

Management of oral candidiasis in leukemia patients involves a combination of preventive and therapeutic approaches. Prophylactic antifungal therapy is recommended for high-risk patients, particularly during periods of profound neutropenia or following intensive chemotherapy. Topical antifungal agents, including nystatin and clotrimazole, are effective for mild infections, whereas systemic therapy with fluconazole or echinocandins is required for moderate to severe cases. Adjunctive measures include maintenance of oral hygiene, use of antiseptic mouthwashes, adequate hydration, dietary optimization, and management of xerostomia. Early recognition and treatment of oral candidiasis prevent systemic dissemination, reduce morbidity, and improve patient comfort and quality of life.

The interplay between immune suppression and oral microbial dysbiosis forms the central mechanism underlying oral candidiasis in leukemia patients. Neutropenia, T-cell dysfunction, and epithelial barrier compromise synergistically increase fungal colonization and infection risk. Oral microbiota shifts and biofilm formation further exacerbate the situation, making eradication challenging. Clinical vigilance, combined with immune monitoring and preventive strategies, is essential. Integrating multidisciplinary care—including hematologists, infectious disease specialists, and dental professionals—optimizes outcomes for leukemia patients. Future research should focus on personalized antifungal prophylaxis, immune-enhancing interventions, and microbiota-targeted therapies to reduce infection burden.

Oral candidiasis is a common opportunistic infection in patients with leukemia due to their compromised immune system, and effective management requires a comprehensive, multidisciplinary approach. The primary goal is to control fungal overgrowth, prevent systemic dissemination, and improve patient comfort and quality of life. Antifungal therapy remains the cornerstone of treatment, with the choice of agent and route depending on the severity of infection and the patient's immune status. Mild cases, often presenting with limited white plaques or erythematous lesions, can be managed with topical antifungal agents such as nystatin suspension, clotrimazole lozenges, or miconazole gel applied directly to the affected areas. These topical treatments reduce local fungal burden and are generally well tolerated, although their effectiveness depends on proper application and patient compliance. Moderate to severe infections, especially in neutropenic patients or those with systemic symptoms, require systemic antifungal therapy. Fluconazole is frequently used due to its broad activity against Candida albicans, favorable pharmacokinetics, and safety profile, while echinocandins or itraconazole may be indicated for resistant species or patients with significant comorbidities. Preventive strategies are equally important in high-risk leukemia patients. Those undergoing intensive chemotherapy, hematopoietic stem cell transplantation, or prolonged immunosuppressive therapy may benefit from prophylactic antifungal administration to minimize the risk of oral and systemic infections. Regular monitoring of oral mucosa and early identification of lesions allow prompt initiation of therapy, reducing morbidity and preventing complications. In addition to pharmacological measures, maintaining optimal oral hygiene is critical. Daily oral care routines, including gentle brushing, use of antiseptic mouth rinses such as chlorhexidine, and management of xerostomia through saliva substitutes or stimulants, help restore mucosal defenses and reduce Candida colonization. Dental appliances and prostheses should be properly disinfected, as these surfaces can harbor biofilms that act as reservoirs for infection.

Immune support forms an integral part of management. Close monitoring of neutrophil and lymphocyte counts, as well as overall immune function, is essential to identify patients at high risk. Administration of hematopoietic growth factors, such as granulocyte colony-stimulating factor (G-CSF), can accelerate neutrophil recovery and enhance the patient's ability to control fungal proliferation. Nutritional support, including adequate protein intake and essential vitamins, further strengthens host immunity. Patient education plays a key role in effective management, emphasizing the recognition of early symptoms such as oral burning, pain, or plaque formation, and encouraging prompt reporting to healthcare providers.

Adjunctive measures also contribute to better outcomes. Treating coexisting oral lesions, minimizing trauma, and addressing underlying factors such as dry mouth or systemic comorbidities reduce the likelihood of persistent or recurrent infection. A multidisciplinary team approach involving hematologists, infectious disease specialists, dentists, and nursing staff ensures coordinated care, early intervention, and consistent monitoring. Overall, effective management of oral candidiasis in leukemia patients requires an integrated strategy combining antifungal therapy, prophylaxis, oral hygiene, immune support, and patient education. Implementing these measures promptly reduces complications, prevents systemic spread, and significantly improves patient comfort and quality of life, while also supporting the overall success of leukemia treatment.

Conclusion:Oral candidiasis is a significant complication in leukemia patients, closely associated with immune suppression and oral microbiota alterations. Assessing immune status provides valuable information for predicting infection risk and guiding preventive and therapeutic interventions. A

comprehensive approach, combining antifungal therapy, oral hygiene, immune support, and risk factor management, is essential to reduce morbidity, improve patient outcomes, and enhance quality of life. Continued research into immune mechanisms, microbial ecology, and novel prophylactic strategies will contribute to improved management of oral candidiasis in this vulnerable population.

References

- 1. Talebshoushtari Zadeh, M., Lotfali, E., Fattahi, M., & Abolghasemi, S. (2022). Oral Candida colonization and anti-fungal susceptibility pattern in patients with hematological malignancy. Current Medical Mycology, 8(3), 18–22.
- 2. Nasri, E., Vaezi, A., Falahatinejad, M., Hosseini Rizi, M., Sharifi, M., Sadeghi, S., Ataei, B., Mirhendi, H., & Fakhim, H. (2022). Species distribution and susceptibility profiles of oral candidiasis in hematological malignancy and solid tumor patients. Brazilian Journal of Microbiology, 54(1), 143–149.
- 3. Valijonovna, O. M. (2023). Aseptic and antiseptic in therapeutic dentistry. Best Journal of Innovation in Science, Research and Development, 2(10), 517-521.
- 4. Valijonovna, O. M., & Bahodirovna, N. M. (2023). TREATMENT OF HYPERESTHESIA AFTER TEETH WHITENING. Научный Фокус, 1(1), 459-465.
- 5. Valijonovna, O. M., & Bahodirovna, N. M. (2023). PREVENTION AND TREATMENT OF COMPLICATIONS AFTER WHITENING. PEDAGOGICAL SCIENCES AND TEACHING METHODS, 2(23), 216-218.
- 6. Valijonovna, O. M., & Bahodirovna, N. M. (2022). PREVENTION AND TREATMENT OF COMPLICATIONS AFTER WHITENING. Scientific Impulse, 1(4), 1201-1207.
- 7. Valijonovna, O. M. (2023). ROLE OF ICON TREATMENT IN MODERN DENTISTRY. Best Journal of Innovation in Science, Research and Development, 117-120.
- 8. Valijonovna, O. M. (2024). BASIC AND ADDITIONAL METHODS OF EXAMINATION OF DENTAL PATIENTS. IMRAS, 7(1), 322-327.
- 9. Орифходжаева, М. В. (2024). ФИЗИОТЕРАПЕВТИЧЕСКИЕ ПРОЦЕДУРЫ, ИСПОЛЬЗУЕМЫЕ В СТОМАТОЛОГИИ ДЛЯ ЛЕЧЕНИЯ ЗАБОЛЕВАНИЙ ПОЛОСТИ РТА. ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 39(5), 144-151.
- 10. Shirazian, S., Manifar, S., Safaei Nodehi, R., & Shabani, M. (2020). Oropharyngeal Candida colonization in patients with acute myeloid leukemia. Frontiers in Dentistry, 17(1).
- 11. Author(s) unknown. (2010). Epidemiology of oral yeast colonization and infection in patients with hematological malignancies, head-neck and solid tumors. Medical Mycology / relevant journal, 200
- 12. Author(s) unknown. (2018). -Opportunistic oral candidiasis in immunocompromised patients: pathogenesis, epidemiology and management. Current Medical Mycology. 2018; details depending on issue.
- 13. Valijonovna, O. M. (2024). WORKERS OF INDUSTRIAL ENTERPRISES ORAL MUCOSA AND PREVENTION OF OCCUPATIONAL DISEASES IN DENTAL CAT DISCHARGE. SCIENTIFIC APPROACH TO THE MODERN EDUCATION SYSTEM, 2(22), 158-163.
- 14. Valijonovna, O. M. (2024). ORAL MUCOSAL INFLAMMATION AND PRIMARY TREATMENT METHODS CAUSED BY VARIOUS DUST PARTICLES IN PLANT AND FACTORY WORKERS. TADQIQOTLAR, 31(1), 188-194.
- 15. Valijonovna, O. M. (2024). TYPES OF OCCUPATIONAL DISEASES FOUND IN THE ORAL MUCOSA AND THEIR DESCRIPTION. TADQIQOTLAR, 31(1), 181-187.

- 16. Valijonovna, O. M. (2024). Dental Condition Trainees of Grain and Grain Products Combine Workers. Research Journal of Trauma and Disability Studies, 3(3), 284-288.
- 17. Valijonovna, O. M. (2024). Normal Microflora and Sanation of the Oral Cavity. JOURNAL OF HEALTHCARE AND LIFE-SCIENCE RESEARCH, 3(5), 302-306.
- 18. Valijonovna, O. M. (2024). MODERN METHODS USED IN THE PREVENTION OF CARIES. EUROPEAN JOURNAL OF MODERN MEDICINE AND PRACTICE, 4(4), 178-183.
- 19. Orifkhujaeva, M. V. (2024). Antiseptic and Disinfectants, Their Use in Dentistry. Journal of Science in Medicine and Life, 2(6), 159-165.
- 20. Orifkhujaeva, M. V. (2024). Treatment Using the Method of Laser Therapy in Dentistry. American Journal of Bioscience and Clinical Integrity, 1(10), 58-63.
- 21. Orifkhujaeva, M. V. (2024). Use of Ozone Therapy in the Treatment of Diseases of the Mucous Membrane of the Oral Cavity. International Journal of Alternative and Contemporary Therapy, 2(9), 111-115.
- 22. Valijonovna, O. M. CANCER OF ORAL MUCOSA: ETIOLOGY, DIAGNOSIS AND TREATMENT.
- 23. Valijonovna, O. M. (2024). Antiseptic and Disinfectants, Their Use in Dentistry