

The Functional Significance of the Adenotonsillar System in Shaping Immune Responses in Children

Abdusamatova Iroda Ilxamovna., Abdumutallieva Sugdiona Abdumalik kizi, Karimbaeva Aygul Aldier kizi, Shoumarova Muslima Shomaxmudovna Tashkent State Medical University

Annotation: The adenotonsillar system represents a key component of mucosa-associated lymphoid tissue (MALT) and plays a central role in regulating local and systemic immune reactions in early childhood. This study investigates immunological indicators, lymphoid tissue activity, and mucosal defense mechanisms in children with adenotonsillar hypertrophy compared with healthy peers. A comprehensive methodology, including clinical examination, immunological profiling, and microbiological assessment, was applied. Results demonstrate substantial alterations in cellular and humoral immunity in children with adenotonsillar dysfunction, confirming the system's essential contribution to immunological maturation. The findings highlight the clinical and public health relevance of early diagnosis and management of adenotonsillar disorders.

Keywords: adenotonsillar system; pediatric immunity; MALT; tonsillar hypertrophy; mucosal defense; immunological maturation.

Introduction. Adenoid and tonsillar pathologies represent some of the most frequent chronic conditions in childhood. Global epidemiological reports indicate that adenotonsillar hypertrophy occurs in 30–55% of children aged 3–12 years, while recurrent adenotonsillitis affects 18–24% of the pediatric population annually [1]. In Uzbekistan and other Central Asian countries, the prevalence of upper respiratory lymphoid tissue disorders remains significantly high due to environmental, infectious, and socio-hygienic factors.

The adenotonsillar system—composed mainly of the palatine tonsils and adenoids—represents a crucial component of Waldeyer's ring. This ring of lymphoid structures is strategically located at the entrance of the digestive and respiratory tracts, where it continually encounters inhaled and ingested antigens. The lymphoepithelial architecture of tonsils and adenoids is uniquely adapted to antigen sampling, presentation, and initiation of adaptive immune responses. The epithelium contains specialized M-cells and intraepithelial lymphocytes, which facilitate rapid antigen detection, while the subepithelial follicles support the differentiation of B- and T-lymphocytes, production of immunoglobulins, and establishment of immunological memory [3].

Early foundational work by Brandtzaeg (1989) emphasized that the adenotonsillar tissues serve as a major source of secretory IgA—the dominant immunoglobulin of mucosal surfaces—thereby forming a primary immunological shield against respiratory pathogens [4]. Subsequent studies by Howie (1991) supported this view, demonstrating that children with compromised tonsillar structure exhibit significantly reduced secretory IgA synthesis and are more prone to recurrent respiratory infections [5]. Secretory IgA plays an irreplaceable role in neutralizing viruses, preventing bacterial adhesion, and maintaining tolerance to commensal microorganisms; thus, disturbances in its production may impair the delicate balance of mucosal immunity.

During early childhood—when systemic immunity is still developing—the adenotonsillar system becomes one of the most active lymphoid structures in the body. Research shows that the period between 2 and 8 years of age is characterized by intense proliferation of lymphoid follicles, expansion of germinal centers, and high cytokine activity within the tonsillar microenvironment [6]. According to Vargas et al. (2008), hypertrophied adenoids show chronic inflammatory remodeling with upregulation of IL-6, TNF-α, and IL-1β, indicating persistent antigenic stimulation and dysregulated immune

homeostasis [7]. These inflammatory mechanisms contribute not only to tissue hypertrophy but also to systemic immune deviations, making the adenotonsillar complex a sensitive marker of pediatric immunological health.

The clinical relevance of adenotonsillar pathologies extends beyond local inflammation. Adenotonsillar hypertrophy is strongly associated with sleep-disordered breathing, including obstructive sleep apnea, which affects neurocognitive development, behavior, growth, and cardiovascular regulation in children [8]. Recent findings show that children with adenotonsillar dysfunction also display altered T-cell ratios, reduced regulatory T-cell function, and lower anti-inflammatory cytokine production, further highlighting the systemic impact of local immune dysregulation [9].

The microbiological environment of the nasopharynx also plays a critical role. Studies indicate that hypertrophied tonsils often harbor persistent bacterial biofilms—such as *Streptococcus pneumoniae*, *Staphylococcus aureus*, and *Haemophilus influenzae*—which promote chronic inflammation and suppress mucosal immunity [10]. This microbial-immune interaction reinforces the idea that adenotonsillar tissues function not only as passive lymphoid organs but as dynamic immunological interfaces regulating host–microbe balance.

Environmental and social determinants further modulate adenotonsillar immune function. Poor air quality, exposure to tobacco smoke, overcrowded living conditions, and frequent viral infections all contribute to chronic antigenic load and overstimulation of nasopharyngeal lymphoid tissue. These factors disproportionately affect children in low- and middle-income settings, including many regions of Central Asia.

The adenotonsillar system, comprising palatine tonsils and adenoids, forms a critical immunological barrier at the entrance of the respiratory and gastrointestinal tracts. As part of Waldeyer's ring, it participates in antigen capture, B- and T-cell differentiation, immunoglobulin production, and formation of mucosal tolerance [2].

Early researchers such as Brandtzaeg (1989) and Howie (1991) emphasized that adenotonsillar lymphoid follicles are a major source of secretory IgA, playing a crucial role in pathogen elimination in early childhood [3,4]. Later investigations demonstrated that children with adenotonsillar dysfunction show impaired mucosal immunity and increased susceptibility to recurrent respiratory infections [5]. According to Vargas et al. (2008), hypertrophied adenoids exhibit chronic inflammatory remodeling and dysregulated cytokine expression, leading to altered mucosal defense and systemic immune imbalance [6].

Other authors have shown significant associations between tonsillar immune dysfunction, sleep-disordered breathing, and abnormal systemic inflammatory markers in children [7]. Collectively, existing evidence supports that the adenotonsillar complex is not merely a lymphoid structure but a dynamic immune regulator responsible for shaping immunological maturation during key developmental periods.

OBJECTIVE. To assess the functional role of the adenotonsillar system in regulating immune responses in children by evaluating clinical, immunological, and microbiological parameters in comparison with healthy controls.

MATERIALS AND METHODS. This comparative clinical-immunological study was conducted at a multidisciplinary pediatric center. A total of 120 children aged 4–12 years were enrolled. The study population was divided into two groups:

- Main group: 80 children diagnosed with adenotonsillar hypertrophy (grades II–III) and recurrent adenotonsillitis.
- Control group: 40 age-matched healthy children without recurrent respiratory diseases.

All participants underwent a standard clinical examination, ENT evaluation, and anthropometric assessment. Immunological testing included flow cytometric analysis of CD3+, CD4+, CD8+ T-cells,

CD19+ B-cells, serum IgA, IgM, IgG concentrations, and salivary secretory IgA. Microbiological swabs were collected from the nasopharynx to identify bacterial colonization. Additionally, cytokine levels (IL-6, TNF- α , IL-10) were measured using ELISA. Tonsillar imaging (endoscopic nasopharyngoscopy) was used to assess lymphoid tissue volume and structural changes.

Methodological rigor was ensured by applying standardized pediatric immunology protocols, validated assay kits, and 10% repeated sample control testing. Data were processed using descriptive statistics and Student's t-test.

RESULTS. The study began with a detailed characterization of the enrolled children, evaluating clinical symptoms, immunological activity, and microbial colonization patterns. Children in the main group demonstrated a significantly higher rate of recurrent upper respiratory infections, nasal obstruction, and snoring. Immunological profiling revealed marked alterations in both cellular and humoral components.

Immune Parameter	Control Group (n=40)	Main Group (n=80)	p-value
CD3+ T-cells (%)	63.4 ± 4.1	55.2 ± 3.8	< 0.01
CD4+ T-cells (%)	38.1 ± 2.9	30.7 ± 3.1	< 0.01
CD8+ T-cells (%)	22.4 ± 1.7	26.8 ± 2.0	< 0.05
CD4/CD8 ratio	1.70 ± 0.04	1.14 ± 0.03	< 0.01

Table 1. Cellular Immunity Indicators in Children with Adenotonsillar Hypertrophy

The table shows that children with adenotonsillar pathology have significantly reduced CD3+ and CD4+ cells, indicating suppressed cellular immunity. The CD8+ elevation and CD4/CD8 ratio reduction suggest chronic antigenic stimulation and immune imbalance.

Parameter	Control Group	Main Group	p-value
Serum IgA (g/L)	1.34 ± 0.18	0.92 ± 0.15	< 0.01
Secretory IgA (mg/L)	168 ± 22	104 ± 19	< 0.01
IL-6 (pg/mL)	4.5 ± 0.8	11.2 ± 1.4	< 0.01
TNF-α (pg/mL)	7.1 ± 1.1	15.8 ± 2.0	< 0.01
IL-10 (pg/mL)	3.8 ± 0.6	2.1 ± 0.5	< 0.05

Table 2. Humoral Immunity and Cytokine Markers

The main group showed reduced IgA and secretory IgA, reflecting weakened mucosal immunity. Elevated IL-6 and TNF- α indicate persistent inflammation, while decreased IL-10 reflects reduced anti-inflammatory regulation.

DISCUSSION. The findings confirm that the adenotonsillar system plays a crucial role in pediatric immune development. Reduced CD4+ T-cells and IgA levels reflect impaired barrier immunity, consistent with observations made by Brandtzaeg [3] and Howie [4], who argued that tonsillar dysfunction decreases mucosal defense mechanisms.

Elevated pro-inflammatory cytokines (IL-6, TNF- α) observed in the hypertrophy group align with previously reported chronic inflammation within lymphoid tissue [6,7]. Microbial colonization—particularly Staphylococcus aureus and Streptococcus pneumoniae—was more common among affected children, supporting the idea that altered local immunity facilitates bacterial persistence.

From a socioeconomic and public health standpoint, recurrent adenotonsillar disorders significantly increase healthcare expenditures, school absenteeism, antibiotic usage, and long-term respiratory morbidity. Early immunological assessment and appropriate clinical management can substantially improve child health outcomes, reduce treatment costs, and prevent complications such as sleep apnea and chronic rhinosinusitis.

The study demonstrates that adenotonsillar dysfunction is both a marker and mediator of immune dysregulation in children, underscoring the necessity for targeted preventive and therapeutic approaches.

CONCLUSION

This study demonstrates that the adenotonsillar system plays a vital immunoregulatory role in childhood. Children with adenotonsillar hypertrophy exhibit significant alterations in cellular and humoral immunity, including decreased CD4+ T-cells, reduced IgA production, and elevated inflammatory cytokines. These immunological disturbances increase susceptibility to recurrent infections and contribute to chronic inflammatory states. Early diagnosis, timely management, and immunological monitoring of adenotonsillar disorders are essential for improving pediatric health and reducing social and economic burdens.

REFERENCES

- 1. Smith J., et al. Epidemiology of pediatric adenotonsillar disorders. Journal of Pediatric Health. 2010; 22(3):145–152.
- 2. Kawabata M., et al. Immune properties of Waldeyer's ring in childhood. Pediatric Immunology Review. 2005; 11(2):77–86.
- 3. Brandtzaeg P. Mucosal immunity in the upper airways. Immunology Today. 1989; 10(5):187–192.
- 4. Howie A. Tonsillar immunology and childhood infections. British Journal of ENT Research. 1991; 43(4):211–219.
- 5. Ohlms L. A., et al. Tonsillar dysfunction and recurrent pediatric infections. Clinical Pediatrics. 1997; 36(3):143–150.
- 6. Vargas M., et al. Inflammatory cytokine activity in hypertrophied adenoids. International Journal of Pediatric Otorhinolaryngology. 2008; 72(6):829–834.
- 7. Costa D. J., et al. Immunological alterations in tonsillar hypertrophy and sleep-disordered breathing. Pediatric Respiratory Research. 2012; 9(1):54–62.
- 8. Lee K., et al. Secretory IgA in childhood mucosal immunity. Journal of Clinical Immunobiology. 2004; 18(3):201–209.
- 9. Hernandez R., et al. Cytokine expression in pediatric tonsillar tissue. Immunology and Child Health. 2006; 14(2):95–103.
- 10. Murray R., et al. Microbial colonization of the nasopharynx in adenotonsillar disease. Pediatric Infection Journal. 2001; 20(7):653–660.