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Abstract: Ultrasound is a widely used medical imaging technique. Tissue characterization with 

ultrasound has become important topic since computer facilities have been available for the analysis of 
ultrasound signals. Automatic liver tissue characterizations from ultrasonic scans have been long the 
concern of many researchers. The system advantage is its high accuracy and its computation 
simplicity. For each available technique, the reproducibility, results and limitations are analyzed, and 
recommendations are given. This set of guidelines updates the first version, published in 2015. Since 
the prior guidelines, there have been several advances in technology. The system can be used as a 
second opinion system to aid the diagnosis of liver diseases. 
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INTRODUCTION: Elastography has been used to evaluate liver stiffness for more than 10 y. As 
chronic liver damage results in hepatic fibrosis, characterized by an increase of extracellular matrix 
produced by fibroblast-like cells, the liver becomes stiffer than normal. Elastography can be used to 
assess liver stiffness non-invasively. It measures tissue behavior when an external mechanical 
actuation or internal push; and (iii) strain elastography (SE) technique, which uses frame-to-frame 
differences (tissue deformation) with stress, caused by pressing the body surface or by internally 
occurring physiologic motion. The ARFI techniques can be divided into point shear wave elastography 
(p-SWE) and 2-D shear wave elastography (2-D SWE) techniques. The shear wave-based techniques 
(TE and ARFI techniques) measure the speed of shear waves in tissues. The shear waves are generated 
by an external mechanical push in TE or by the push pulse of a focused ultrasound beam in the ARFI 
techniques. For both of these techniques, the shear wave speed calculated, which is related to liver 
stiffness, can be converted into kilopascals, the unit of Young’s modulus E (3rv2 , where r is the tissue 
density and v is the speed of the shear wave), assuming that the tissue is purely elastic, incompressible, 
its elastic response is linear and that the tissue density is always 1000 kg/m3 . It is important to note 
that magnetic resonance elastography (MRE) reports the shear modulus in kilopascals and is three 
times smaller than the Young’s modulus used to report the results of the ultrasound techniques (Barr et 
al. 2016b). Guidelines on the use of US elastography for the assessment of liver diseases were 
produced by the World Federation for Ultrasound in Medicine and Biology (WFUMB) a few years ago 
(Ferraioli et al. 2015); however, this is a very rapid growing field and new evidence and improvements 
are available since that release. Our objectives were to determine, based on the evidence from the 
literature, what is new since the previous release of the WFUMB guidelines (Ferraioli et al. 2015), 
regarding the impact of elastography on reduced use and/or replacement of liver biopsy for diffuse 
liver diseases. The potential role of elastography in the characterization of focal liver lesions is also 
discussed. Hepatology is an excellent example of how results deriving from basic science influence 
our everyday clinical practice. This involves diagnostic procedures as well as therapeutic 
developments. The role of diagnostic imaging in the assessment of liver disease continues to gain in 
importance. Imaging of the liver has progressed rapidly during the past decade with continued 
advancement of current ultrasound, computed tomography, and magnetic resonance imaging.  
Refinement enabling better anatomic characterization of disease and significant strength from the 
addition of new techniques and high resolution images were seen. Improvements in ultrasound (US) 
scanners over the past few decades have been remarkable: advances such as color Doppler and 
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harmonic imaging have increased image quality and accuracy. Ultrasound is usually the first imaging 
modality in the evaluation of liver disease because it is easy to perform, widely available, relatively 
inexpensive and is cost effective. Tissue characterization is a term that usually refers to the quantitative 
estimation of tissue or image features leading to a more accurate distinction of normal and abnormal 
tissues, the results of tissue characterization are quantitatively interpreted using numerical values. It 
aims to provide additional information about tissues not available by viewing ordinary images of the 
ultrasound B-scan. Thus, gained information are quantitative and is far less operator dependent than 
the usual B-scan images. Changes in tissue elasticity are generally correlated with pathological 
phenomena. Many cancers appear as extremely hard nodules which are a result of increased stormal 
density (collagen content). Other diseases involve fatty and/or collagenous deposits which increase or 
decrease tissue elasticity. Complicated fluid filled cysts could be invisible in standard ultrasound 
examination. Diffuse diseases such as cirrhosis are known to significantly reduce the elasticity of the 
liver, yet they appear normal in conventional ultrasound examinations. The Visual criteria provide low 
diagnostic accuracy around 70%. Therefore the physicians may have to use further invasive methods 
such as the pathology investigation of ultrasonically guided needle biopsy [1], [2]. Although this 
technique is considered to be the best test for diagnosis, it has the disadvantage of being invasive and 
risky, it may cause a great risk of cancer spread if it cuts through a localized cancer area. The 
quantitative tissue characterization steps first, are to extract the features (parameters) from the returned 
signal, (pulse-echo data) and then analyze these features and correlating it to different Pathologies [3], 
[4]. Quantitative tissue characterization technique (QTCT) is gaining more acceptance and 
appreciation from the ultrasound diagnosis community. It has the potential to significantly assist 
sonographers to achieve better diagnostic rates. QTCT is based on extracting parameters from the 
returned ultrasound echoes for the purpose of identifying the type of tissue present in ultrasound scan 
plane. These parameters can be divided into two main categories according to their origin: 1) RF 
Signals parameters: extracted from the returned RF echoes prior to machine processing, attenuation 
and backscattering parameters. 2) Image texture parameters: extracted from the video image after the 
echo processing is performed in machine, such parameters include the statistical characteristics of the 
gray level distribution in certain region of interest (ROI) in the image. RF Signal parameter has the 
advantage of being free from any machine processing distortions, while the second has the advantage 
of being easier to implement [5], [6]. The major advantage of using computerized B-mode ultrasound 
is the possibility of obtaining tissue-specific parameters which are unattainable by visual assessment. 
These characteristics apply to changes of the tissue texture due to diffuse diseases of organs (e.g., 
cirrhosis) or caused by focal lesions. In both cases the changes are expressed relative to some standard 
display of the texture e.g. the normal echogram of the healthy organ. Brightness scale depends on echo 
strength [7]. The mean gray level physical meaning is the brightness or echogenicity of the texture, 
which most of the Sonographers write it in their ultrasound report. It is well established that in fatty 
(Steatosis) and cirrhosis liver classes, the echogenicity is higher, and sometimes they called this group 
as "bright liver" [8]. Figure 1 shows the ultrasound image for fatty (bright) liver which shows the 
higher echogenicity, but brightness is not sufficient to diagnose subjectively fatty liver from cirrhosis. 
Most of the fatty and Cirrhotic livers are Hyper echoic. Figure 2 shows the ultrasound image for the 
cirrhotic liver. Figure 3 shows the ultrasound image for cancer liver. Figure 4 shows the ultrasound 
image for the normal liver, it is isoechoic (normal brightness). Figure 5 shows ultrasound images for 
some samples for the four liver cases. The gray-scale ultrasound images generated in the clinical 
environment provide significant contributions to the diagnosis of liver diseases. However, at the 
resolution capabilities practical for abdominal scanning, common diffuse diseases of the liver, such as 
hepatitis, fatty infiltrations, and early cirrhosis, are difficult to diagnose from normal by visual 
inspection of the B-mode [9]. Fatty liver containing very little fibrous tissue would produce a similar 
sonogram to that cirrhotic liver containing similar quantity of fibrous tissue making it difficult for a 
clinician to differentiate fatty from cirrhotic livers, so the specific texture on B-scan images is believed 
to be related to tissue properties, i.e., the pathological state of the soft tissue. Therefore, for 
classification, features can be extracted with the use of image texture analysis techniques. We propose 
the gray scale statistics for texture characterization. Neural networks [10, 11] provide computational 
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techniques that are able to deal with our problem. The fundamental objective for neural networks 
pattern recognition systems is classifying an input to provide a meaningful categorization of its data 
content. A Pattern recognition system can be considered as a two stages device, the first stage is feature 
extraction, and the second is classification. Features are the measurements taken on the input pattern 
that is to be classified; typically we are looking for minimum features that will provide a definite 
characteristic of that input type. 

 

 
Material and methods 
The most spread and known diseases in our country such as fatty liver (steatosis), cirrhoses and 
carcinoma (cancer) are chosen to be our cases in addition to the normal case to be easy to compare the 
disorder ones with the normal case. Ultrasound images used in our research were obtained on [Toshiba 
ECCO CEE. and Toshiba SSA-100] with 3.5- MHz.transducer frequency; Images were captured with 
512 x 512 pixels and 256 gray-level resolution. Fasting Condition of the patients is substantial, it has 
been suggested that patients should be fasting for eight hours before any scan to avoid the effect of 
changing liver glycogen and water storage on ultrasound attenuation. Ultra sound images for different 
liver cases taken from patients with known histology and accurately diagnosed by specialized 
sonographer from various hospitals such as, department of tropical medicine and hepatology Cairo 
University (Kaser El-aini Hospital), Al Moalemeen Hospital Gezira, and Charity Center for Liver 
Diseases and Researches - Nasser City, Altyseer Medical center and other clinical centers are the 
assistant to our database. Four sets of images have been taken: Normal, Fatty, Cirrhoses and cancer, for 
each case we have 160 samples from 80 subjects, 80 samples to find out the learning data for 
classification and 80 samples for testing each liver case, Except for Normal case we have 200 samples 
from 100 subjects, after discarding the false negative and false positive samples. From each image, two 
blocks of 64X64 pixels approximately 2cm x2cm in actual dimension have been selected. Blocks were 
chosen to include only liver tissue, without blood vessels, acoustic shadowing, or any type of 
distortion. We select 320 samples from 340 for training set 
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and 320 samples from 340 for test set were composed out of all blocks from independent images. An 
important initial step is to divide the data set into two independent subsets, Train and Test sets. This 
preliminary step effectively avoids introducing false-negative or falsepositive. False-negative rate is 
the probability that the classification result indicates a normal liver while the true diagnosis is indeed is 
liver diseases i.e., positive. This case should be completely avoided. False-positive rate is the 
probability that the classification result indicates liver diseases while the true diagnosis is indeed a 
normal liver. 
VARIABILITY BETWEEN P-SWE AND 2-D SWE SYSTEMS Limitations and system differences 
The main limitation of these techniques is that different estimates of shear wave speed (SWS) are 
obtained with different systems. The Quantitative Imaging Biomarker Alliance (QIBA) committee of 
the Radiologic Society of North America (RSNA) performed an inter-laboratory study of SWS 
estimation in elastic phantoms. Commercially available SWE systems were used. A statistically 
significant difference in SWS estimates among systems and a depth-dependent estimate of SWS for 
each system were obtained. The inter-system variability ranged from 6% to 12%. No statistically 
significant differences were found among raters using the same system. The study also reported very 
good agreement between systems (Hall 2013). It was found that in viscoelastic phantoms, the deepest 
focal depth (7.0 cm) yielded the greatest intersystem variability for each phantom (maximum of 
17.7%) as evaluated by the interquartile range (IQR), and the median SWS estimates for the greatest 
outlier system for each phantom/focal depth combination ranged from 12.7% to 17.6% (Palmeri 2015). 
A study has evaluated the variability of SWS assessed with a p-SWE technique at various depths using 
different frequencies. In both the phantom and liver, the mean velocities as measured by two probes at 
the same depth and at different depths differed. The lowest variability in the phantom was at 4 and 5 
cm from surface with the convex probe and at 2 cm with a linear probe. In the liver, the depth with 
lower variability was 4 cm from the skin with a convex probe and at 3 and 4 cm with a linear probe 
(Chang et al. 2013). In another study on 89 chronic hepatitis C virus (HCV)-infected patients, the 
linear probe gave SWS values higher than those obtained with the convex probe (Potthoff et al. 2013). 
This is expected because the SWS is dependent on the ARFI frequency: The higher the ARFI 
frequency, the higher the SWS. A recent study has evaluated the inter-system and inter-observer 
variability of LSMs in patients with varying degrees of liver stiffness (Ferraioli et al. 2018). The 
assessment of LSMs was performed using six US systems, four with p-SWE and two with 2-D SWE. 
The Fibroscan was used as the reference standard. There was an agreement >0.80 for all pairs of 
systems. The mean difference between the values of the systems with 2-D SWE technique was 1.54 
kPa, whereas the maximum mean difference between the values of three of four systems with p-SWE 
technique was 0.79 kPa. The variability between measurements obtained with different systems was 
higher in stiffer liver. The range of values obtained with the two 2-D SWE systems paralleled that of 
the Fibroscan in cases of very stiff liver (>15 kPa), whereas the four systems with a p-SWE technology 
gave lower values in the higher range of liver stiffness. The intra-patient concordance for all systems 
was 0.89 (95% confidence interval [CI]: 0.830.94). Inter-observer agreement was >0.90. Piscaglia et 
al. (2017) reported that the correlation between stiffness measurements taken with several systems 
(including the Fibroscan) in different intercostal spaces was good but not perfect. 
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It is quite important to describe the most significant parameters used to build our quantitative tissue 
characterization system The Mean Gray Level, physical meaning is the brightness or echogenicity of 
the texture, It is well established that in fatty and cirrhosis liver classes, the echogenicity is higher, and 
sometimes they called this group as "Bright Liver" but brightness is not sufficient to diagnose 
subjectively fatty liver from cirrhosis. Most of the fatty and Cirrhotic livers are Hyperechoic, while the 
normal texture is isoechoic (normal brightness). It is clear from figures (7, 8, 10, 11 and 12) and table 1 
that the mean gray level of cirrhotic and Carcinoma ultrasound pictures are mixed. Fatty livers are the 
highest mean gray level. The lowest mean gray level is that for Carcinoma liver, and the mean gray 
level of fatty liver is slightly higher than in cirrhotic Livers. 
TRANSIENT ELASTOGRAPHY. The procedure has been fully described in the previous WFUMB 
guidelines on liver elastography (Ferraioli et al. 2015). The strengths of the TE approach are that it is 
widely available and a point-of-care technique. Weaknesses are the lack of gray-scale image guidance 
to determine where the measurement is being obtained, inability to visualize and avoid large vessels 
and masses at the site of measurement (although these may be generally identified on the time-motion 
and A-mode), the need for recalibration of the spring in the device at 6- to 12-mo intervals (depending 
on the type of probe), decreased applicability in cases of obesity and inability to use it in patients with 
ascites. 
ARFI-BASED TECHNIQUES. The procedure has been fully described in the previous guidelines 
(Barr et al. 2016b). These are listed in Table 2 Although most vendors allow measurements to 8 cm 
from the transducer, measurement accuracy decreases below 6 cm from the transducer because of 
attenuation of the ARFI pulse. The literature suggests that 10 measurements should be obtained for p-
SWE, and the median value reported. Several studies have indicated that an IQR/ median (M) 30% 
(measurements in kPa) improves accuracy in staging liver fibrosis. Recent literature suggests that a 
smaller number of measurements may be accurate (Fang et al. 2018; Ferraioli et al. 2016a); however, 
at this time there is not enough literature to support this suggestion. The energy deposition of the ARFI 
push pulse for U.S. Food and Drug Administration (FDA)- approved vendor systems is within current 
FDA diagnostic limits for livers in adults. Off-label use for other organs and for use during and 
immediately after the use of US contrast materials should be avoided until further investigated (Cui et 
al. 2014). In 2-D SWE, a larger field of view (FOV) is placed where the elastogram will be obtained. 
Within that FOV, regions of interest (ROIs) can be placed to obtain the stiffness value. As opposed to 
p-SWE, the ROI size can be changed. If possible, the ROI should be placed near the center of the FOV, 
as there are often errors at the borders of the FOV. Most vendors provide the average and the standard 
deviation of the stiffness values from the pixels in the ROI, and some of them provide the minimum 
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and maximum stiffness values as well. The mean value should be used. The standard deviation within 
the ROI reports the variability of the pixel measurements within the ROI and is not a measure of the 
quality of the measurement. Not enough studies have been performed to provide recommendations, but 
several studies using 2-D SWE have used three or five measurements if the system has a quality 
measure that confirms the area of measurement has high-quality shear waves (Dietrich et al. 2017a). 
Most vendors with 2-D SWE may allow the placement of many ROIs within the elastogram FOV. This 
is discouraged, because if there is an error in that image, the error is reproduced in all the 
measurements from that image.  
STRAIN ELASTOGRAPHY. There is no significant change from previous WFUMB liver 
elastography guidelines (Table 2) (Ferraioli et al. 2015). A limited study using combinational 
elastography, the combined use of strain and shear wave imaging with a single machine, might 
increase accuracy in the diagnosis of liver fibrosis and inflammation (Yada et al. 2017a, 2017b). Data 
mining, which combines SE and serologic tests, is reported to be the novel approach (Yada et al. 
2014). In a meta-analysis (Kobayashi et al. 2015) of 15 studies with 1626 patients, SE was found not 
to have high accuracy for any cutoff stage of fibrosis. REPRODUCIBILITY Shear wave elastography 
techniques have excellent reproducibility, provided the recommendations of the manufacturer or expert 
recommendations are followed. For all systems, intra-observer reproducibility assessed with the intra-
class correlation coefficient (ICC) was >0.90, and inter-observer reproducibility was >0.80 (Boursier 
et al. 2008a; Fang et al. 2017; Ferraioli et al. 2012; Fraquelli et al. 2007; Garcovich et al. 2017; 
Hudson et al. 2013). Factors that influence the reproducibility of the measurement are similar across 
the different techniques and are related to the operator’s experience and to factors dependent on the 
subject being examined. A learning curve has been consistently observed not only for TE (Boursier et 
al. 2008b), but also for p-SWE (Fraquelli et al. 2016) and 2-D SWE (Ferraioli et al. 2012; Hudson et 
al. 2013; Woo et al. 2015), with higher reproducibility achieved by expert operators. Inter-observer 
variability increases with higher liver fibrosis stages (Boursier et al. 2008a; Fraquelli et al. 2007; 
Vuppalanchi et al. 2018) and in overweight or obese patients (Boursier et al. 2008a; Fraquelli et al. 
2007). Patient position and respiration phase can affect the results, and variability is decreased by 
using standardization. CONFOUNDING FACTORS AND LIMITATIONS Although liver fibrosis is 
the main determinant of liver stiffness, a number of factors have been found to influence LSM, often 
resulting in a false-positive diagnosis of advanced fibrosis or cirrhosis. Clinicians should be aware of 
these confounding factors and avoid using liver elastography in such situations. Although most of the 
studies were conducted using TE for historical reasons, studies using p-SWE or 2-D SWE almost 
always produced similar effects, suggesting that the same confounders should affect all techniques 
similarly. Confounding factors were already reported in the previous guidelines (Barr et al. 2016b; 
Dietrich et al. 2017a; Ferraioli et al. 2015). Details on the published studies are available in 
Supplement 1 (online only). Liver steatosis causes attenuation of the ARFI pulse and can lead to more 
variability in the measurements, although theoretically it should not affect the SWS, based on current 
ARFI methods in clinical use, even though some reports have indicated that livers with steatosis have 
increased viscoelasticity, which can also affect SWS. Published studies have conflicting results. 
Comparison with the US signs of liver steatosis. Few studies, all carried out with small samples, are 
available. Only two studies have performed a head-to head comparison with liver biopsy as reference: 
one in patients with chronic liver disease (de Ledinghen et al. 2012a) and the other in patients with 
chronic hepatitis B (Xu et al. 2017a). Both studies indicated that the performance of CAP for detecting 
and grading liver steatosis was higher than that of US; however, the rate of overestimation was 
significantly higher for CAP than for US (30.5% vs. 12.4%, p < 0.05) (Xu et al. 2017a). A study that 
has assessed the diagnostic accuracy of CAP in comparison with US for detection and quantification of 
hepatic steatosis in the general population reported that CAP significantly correlated with steatosis; the 
AUROCs were 0.94 (95% CI: 0.91 0.97) for significant steatosis and 0.95 
(95% CI: 0.900.99) for severe steatosis (Carvalhana et al. 2014). It has been reported that in patients 
with advanced liver fibrosis, CAP performs better than US in assessing liver steatosis (Ferraioli et al. 
2016b). The US findings of liver fibrosis and steatosis could be similar, and this may decrease the 
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diagnostic accuracy of US. No data in NAFLD patients are available. By use of the imperfect gold 
standard methodology in a series of overweight or obese children, it has been reported that for the 
evaluation of liver steatosis in children, CAP performs better than US, and a cutoff value for CAP of 
249 dB/m rules in liver steatosis with 0.98 (0.970.98) specificity (Ferraioli et al. 2017) 
Comparison with magnetic resonance (proton density fat fraction). Studies that have assessed the 
diagnostic accuracy of CAP compared with proton density fat fraction (PDFF) magnetic resonance 
(MR) spectroscopy, using liver biopsy as reference, have reported that CAP is outperformed by MRI-
PDFF for steatosis grading. In a study on 142 patients with NAFLD, CAP identified hepatic steatosis grade 
2 with an AUROC of 0.73 (95% CI: 0.640.81), whereas PDFF yielded an AUROC of 0.90 (95% CI: 
0.820.97, p < 0.001) (Imajo et al. 2016). In another study on 55 patients suspected of having NAFLD 
both PDFF and CAP detected histologically proven steatosis (S1), but PDFF had better diagnostic 
accuracy than CAP in terms of AUROCs (0.99 vs. 0.77, respectively; p = 0.0334) (Runge et al. 2017). 
Likewise, another study in 104 consecutive patients reported that MRI-PDFF is more accurate than 
CAP in detecting all grades of steatosis in patients with NAFLD (Park et al. 2017). MRI-PDFF 
identified steatosis of grade 2 or 3 with AUROC values of 0.90 (95% CI: 0.820.97) and 0.92 (95% CI: 
0.840.99); CAP identified steatosis of grade 2 or 3 with AUROC values of 0.70 (95% CI: 0.580.82) 
and 0.73 (95% CI: 0.580.89). A study that assessed the accuracy of CAP using magnetic resonance 
spectroscopy as the reference standard in HIV-infected patients found that the results obtained with the 
two techniques correlated well; however, patients with higher body composition parameters were more 
likely to be misclassified as having hepatic steatosis by CAP (Price et al. 2017). 
Follow-up Longitudinal studies are awaited. Recently, a study that followed up 4282 patients who had 
both a reliable LSM and 10 successful CAP measurements reported that neither the presence nor the 
severity of hepatic steatosis predicted liver-related events, cancer or cardiovascular events in the short 
term, while LSM and etiology independently predicted liverrelated events (Liu et al. 2017). Subgroup 
analyses of viral hepatitis (hepatitis B: 37.0%, hepatitis C: 2.9%) and NAFLD patients (40.7% of the 
entire cohort) revealed similar results. 
Summary. The controlled attenuation parameter is a promising point-of-care technique for rapid and 
standardized steatosis quantification, but needs to be better validated in patients with NAFLD with the 
XL probe. CAP quality criteria are not well defined. There are no consensual cutoff values, and the 
influence of BMI and diabetes should be further explored. More data are needed with the XL probe in 
NAFLD patients, who are the target population, and for the comparison with US, taking liver biopsy as 
the reference standard. Longitudinal studies are awaited. CAP is outperformed by MRI-PDFF. Current 
technological advances of imaging ultrasound systems are directed at grading steatosis. However, no 
studies are available yet. 
RECOMMENDATION: CAP is a point-of-care, standardized and reproducible technique, promising 
for the detection of liver steatosis. However, for quantifying steatosis there is a large overlap between 
adjacent grades, there are no consensual cutoffs and quality criteria are not well defined. (LoE 3, GoR 
C) (10,0,0) 
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Practical advice for interpretation of liver stiffness values. There is significant overlap of stiffness 
values for the varying degrees of liver fibrosis. All techniques have high accuracy for normal patients 
and most patients with cirrhosis. However, degrees of liver stiffness between these two extremes 
overlap substantially. One approach is to use a cutoff value system as recommended by the SRU, with 
a low cutoff below which there is a high probability of being normal or having minimal fibrosis and a 
high cutoff value where there is a high probability of significant fibrosis or cirrhosis (Barr et al. 
2016a). Some patients with biopsy-proven cirrhosis have had relatively low stiffness values in many 
studies. Another clinical approach to interpreting liver stiffness values would be in keeping with that 
recommended for TE by the Baveno VI Conference (de Franchis and Baveno 2015). The socalled “rule 
of 5” (Young’s modulus 5, 10, 15 and 20 kPa) could be recommended (Fig. 1): LS 15 kPa are highly 
suggestive of compensated advanced chronic liver disease. Values 2025 kPa can rule in CSPH. 
Recommendation 16: Interpretation of liver stiffness measurements needs to be taken in context with 
the other clinical and laboratory data. (LoE 1b, GoR A) (10,0,0) 

 
Minimal requirements for future studies. When studies evaluating liver elastography are performed, 
it is recommended that the items in Table 3 be included in the methodology, to allow for better 
comparison between studies and techniques. The Statement for Reporting Studies of Diagnostic 
Accuracy (STARD checklist) should be used before starting studies of diagnostic accuracy 
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