Similarities and Differences between Helicobacter Pylori and Campylobacter Jejuni and Measures to Combat Them

Authors

  • Ishmurodov Murodzhon Bakhromovich Tashkent Scientific Research Institute of Vaccines and Serums
  • Li Larisa Temofeevna Tashkent Scientific Research Institute of Vaccines and Serums

Keywords:

Epsilonproteobacteria, Arcobacter, peptic ulcer disease, gram-negative bacteria, human gastrointestinal pathogen

Abstract

Epsilonproteobacteria bacteria such as Campylobacter jejuni and Helicobacter pylori cause foodborne infections that cause human campylobacteriosis, which is the leading cause of bacterial gastroenteritis worldwide. Infected people develop abdominal pain and diarrhea after eating infected poultry meat, which is the main source of transmission of pathogens to humans. After acute enteritis, postinfectious disorders affecting the nervous system, joints or intestines may occur. Immunodeficiency concomitant diseases of infected patients cause bacteremia, which causes septicemia and vascular inflammation. Prevention of human infection is achieved through hygienic measures aimed at reducing pathogenic contamination of food products. Molecular targets for the treatment and prevention of campylobacteriosis and Helicobacteriosis include pathogenicity and virulence factors of bacteria involved in motility, adhesion, invasion, oxygen detoxification, acid resistance and biofilm formation. Drugs that suppress pro-inflammatory immune reactions caused by Campylobacter and Helicobacter endotoxin lipooligosaccharide have recently added to this list of treatment methods. To reduce the risk of both antimicrobial resistance and the post-infectious effects of acute enteritis, new pharmaceutical approaches will combine anti-pathogenic and anti-inflammatory effects. This review presents the latest methods and trends in the fight against Campylobacter and Helicobacter infections, as well as molecular targets for prevention and treatment.

References

Ahasan, M. S., Waltzek, T. B., Huerlimann, R., and Ariel, E. (2018). Comparative analysis of gut bacterial communities of green turtles (Chelonia mydas) pre-hospitalization and post-rehabilitation by high-throughput sequencing of bacterial 16S rRNA gene. Microbiol. Res. 207, 91–99. doi: 10.1016/j.micres.2017.11.010

Atherton, J. C., and Blaser, M. J. (2009). Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J. Clin. Invest. 119, 2475–2487. doi: 10.1172/JCI38605

Baily, J. L., Méric, G., Bayliss, S., Foster, G., Moss, S. E., and Watson, E. (2014). Evidence of land-sea transfer of the zoonotic pathogen Campylobacter to a wildlife marine sentinel species. Mol. Ecol. 24, 208–221. doi: 10.1111/mec.13001

Benejat, L., Gravet, A., Sifré, E., Ben Amor, S., Quintard, B., Mégraud, F., et al. (2014). Characterization of a Campylobacter fetus-like strain isolated from the faeces of a sick leopard tortoise (Stigmochelys pardalis) using matrix-assisted laser desorption/ionization time of flight as an alternative to bacterial 16S rDNA phylogeny. Lett. Appl. Microbiol. 58, 338–343. doi: 10.1111/lam.12194

Blaser, M. J., Newell, D. G., Thompson, S. A., and Zechner, E. L. (2008). “Pathogenesis of Campylobacter fetus,” in Campylobacter, eds I. Nachamkin, C. M. Szymanski, and M. J. Blaser (Washington, DC: ASM Press),401–428.

Briones, V., Téllez, S., Goyache, J., Ballesteros, C., del Pilar Lanzarot, M., Domínguez, L., et al. (2004). Salmonella diversity associated with wild reptiles and amphibians in Spain. Environ. Microbiol. 6, 868–871.

Polk, D. B., and Peek, R. M. Jr. (2010). Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer 10, 403–414. doi: 10.1038/nrc2857

Gundogdu, O., and Wren, B. W. (2020). Microbe profile: Campylobacter jejuni–survival instincts. Microbiology 166, 230–232. doi: 10.1099/mic.0.000906

Amour, C., Gratz, J., Mduma, E., Svensen, E., Rogawski, E. T., Mcgrath, M., et al. (2016). Epidemiology and impact of Campylobacter infection in children in 8 low-resource settings: results from the MAL-ED study. Clin. Infect. Dis. 63, 1171–1179. doi: 10.1093/cid/ciw542

Salama, N. R., Hartung, M. L., and Muller, A. (2013). Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat. Rev. Microbiol. 11, 385–399. doi: 10.1038/nrmicro3016

Brown, L. M. (2000). Helicobacter pylori: epidemiology and routes of transmission. Epidemiol. Rev. 22, 283–297. doi: 10.1093/oxfordjournals.epirev.a018040

Gundogdu, O., Da Silva, D. T., Mohammad, B., Elmi, A., Wren, B. W., Van Vliet, A. H., et al. (2016). The Campylobacter jejuni oxidative stress regulator RrpB is associated with a genomic hypervariable region and altered oxidative stress resistance. Front. Microbiol. 7:2117. doi: 10.3389/fmicb.2016.02117

van den Bruele, T., Mourad-Baars, P.E.C., Claas, E.C.J. et al. Campylobacter jejuni bacteremia and Helicobacter pylori in a patient with X-linked agammaglobulinemia. Eur J Clin Microbiol Infect Dis 29, 1315–1319 (2010). https://doi.org/10.1007/s10096-010-0999-7

Moran AP. The role of endotoxin in infection: Helicobacter pylori and Campylobacter jejuni. Subcell Biochem. 2010;53:209-40. doi: 10.1007/978-90-481-9078-2_10.

Corcionivoschi N, Thompson SA and Gundogdu O (2021) Editorial: Developments in Campylobacter, Helicobacter & Related Organisms Research – CHRO 2019. Front. Microbiol. 11:622582. doi: 10.3389/fmicb.2020.622582

Oren, A., Garrity, G. M. (2021). Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 71 (10), 5056. doi: 10.1099/ijsem.0.005056

Waite, D. W., Vanwonterghem, I., Rinke, C., Parks, D. H., Zhang, Y., Takai, K., et al. (2017). Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to epsilonbacteraeota (phyl. nov.). Front. Microbiol. 8. doi: 10.3389/fmicb.2017.00682

Igwaran, A., Okoh, A. I. (2019). Human campylobacteriosis: A public health concern of global importance. Heliyon 5 (11), e02814. doi: 10.1016/j.heliyon.2019.e02814

Same, R. G., Tamma, P. D. (2018). Campylobacter infections in children. Pediatr. Rev. 39 (11), 533–541. doi: 10.1542/pir.2017-0285

Hooi, J. K. Y., Lai, W. Y., Ng, W. K., Suen, M. M. Y., Underwood, F. E., Tanyingoh, D., et al. (2017). Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153 (2), 420–429. doi: 10.1053/j.gastro.2017.04.022

Chmiela, M., Kupcinskas, J. (2019). Review: Pathogenesis of Helicobacter pylori infection. Helicobacter 24 Suppl 1, e12638. doi: 10.1111/hel.12638

Gilbert MJ, Duim B, Zomer AL and Wagenaar JA (2019) Living in Cold Blood: Arcobacter, Campylobacter, and Helicobacter in Reptiles. Front. Microbiol. 10:1086. doi: 10.3389/fmicb.2019.01086

Corcionivoschi N, Thompson SA, Gundogdu O. Editorial: Developments in Campylobacter, Helicobacter & Related Organisms Research - CHRO 2019. Front Microbiol. 2021 Jan 8;11:622582. doi: 10.3389/fmicb.2020.622582.

Naughton JAMariño K, Dolan BReid C, Gough R, Gallagher ME, Kilcoyne M, Gerlach JQ, Joshi L, Rudd P, Carrington S, Bourke B, Clyne M 2013. Divergent Mechanisms of Interaction of Helicobacter pylori and Campylobacter jejuni with Mucus and Mucins. Infect Immun 81:.https://doi.org/10.1128/iai.00415-13

Foynes, S., Dorrell, N., Ward, S. J., Stabler, R. A., McColm, A. A., Rycroft, A. N., et al. (2000). Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect. Immun. 68 (4), 2016–2023. doi: 10.1128/IAI.68.4.2016-2023.2000

Delany, I., Spohn, G., Rappuoli, R., Scarlato, V. (2002). Growth phase-dependent regulation of target gene promoters for binding of the essential orphan response regulator HP1043 of Helicobacter pylori. J. Bacteriol 184 (17), 4800–4810. doi: 10.1128/JB.184.17.4800-4810.2002

Lertsethtakarn, P., Ottemann, K. M., Hendrixson, D. R. (2011). Motility and chemotaxis in Campylobacter and Helicobacter. Annu. Rev. Microbiol. 65, 389–410. doi: 10.1146/annurev-micro-090110-102908

McKenna A., Ijaz U. Z., Kelly C., Linton M., Sloan W. T., Green B. D., et al.. (2020). Impact of industrial production system parameters on chicken microbiomes: mechanisms to improve performance and reduce Campylobacter. Microbiome 8:128. 10.1186/s40168-020-00908-8

Polk D. B., Peek R. M., Jr. (2010). Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer 10, 403–414. 10.1038/nrc2857

Quaglia N. C., Dambrosio A. (2018). Helicobacter pylori: a foodborne pathogen? World J. Gastroenterol. 24, 3472–3487. 10.3748/wjg.v24.i31.3472

Salama N. R., Hartung M. L., Muller A. (2013). Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat. Rev. Microbiol. 11, 385–399. 10.1038/nrmicro3016

Sibanda N., McKenna A., Richmond A., Ricke S. C., Callaway T., Stratakos A. C., et al.. (2018). A review of the effect of management practices on Campylobacter prevalence in poultry farms. Front. Microbiol. 9:2002. 10.3389/fmicb.2018.02002

Tegtmeyer N., Wessler S., Necchi V., Rohde M., Harrer A., Rau T. T., et al.. (2017). Helicobacter pylori employs a unique basolateral type IV secretion mechanism for CagA delivery. Cell Host Microbe 22, 552.e5–560.e5. 10.1016/j.chom.2017.09.005

Casado J, Lanas Á, González A. Two-component regulatory systems in Helicobacter pylori and Campylobacter jejuni: Attractive targets for novel antibacterial drugs. Front Cell Infect Microbiol. 2022 Aug 24;12:977944. doi: 10.3389/fcimb.2022.977944.

Heimesaat MM, Backert S, Alter T, Bereswill S. Molecular Targets in Campylobacter Infections. Biomolecules. 2023; 13(3):409. https://doi.org/10.3390/biom13030409

Rokkas T., Rokka A., Portincasa P. (2017). A systematic review and meta-analysis of the role of Helicobacter pylori eradication in preventing gastric cancer. Ann. Gastroenterol. 30 (4), 414–423. doi: 10.20524/aog.2017.0144

Nam S. Y., Park B. J., Nam J. H., Kook M. C. (2019). Effect of Helicobacter pylori eradication and high-density lipoprotein on the risk of de novo gastric cancer development. Gastrointest Endosc 90 (3), 448–456 e441. doi: 10.1016/j.gie.2019.04.232

Mizuno S., Yokoyama K., Nukada T., Ikeda Y., Hara S. (2022). Campylobacter jejuni bacteremia in the term infant a rare cause of neonatal hematochezia. Pediatr. Infect. Dis. J. 41 (4), e156–e157. doi: 10.1097/INF.0000000000003453

Min, K., An, D.R., Yoon, HJ. et al. Peptidoglycan reshaping by a noncanonical peptidase for helical cell shape in Campylobacter jejuni. Nat Commun 11, 458 (2020). https://doi.org/10.1038/s41467-019-13934-4

Downloads

Published

2024-07-27

How to Cite

Bakhromovich, I. M., & Temofeevna, L. L. (2024). Similarities and Differences between Helicobacter Pylori and Campylobacter Jejuni and Measures to Combat Them. International Journal of Integrative and Modern Medicine, 2(7), 203–209. Retrieved from https://medicaljournals.eu/index.php/IJIMM/article/view/814