Similarities and Differences between Helicobacter Pylori and Campylobacter Jejuni and Measures to Combat Them
Keywords:
Epsilonproteobacteria, Arcobacter, peptic ulcer disease, gram-negative bacteria, human gastrointestinal pathogenAbstract
Epsilonproteobacteria bacteria such as Campylobacter jejuni and Helicobacter pylori cause foodborne infections that cause human campylobacteriosis, which is the leading cause of bacterial gastroenteritis worldwide. Infected people develop abdominal pain and diarrhea after eating infected poultry meat, which is the main source of transmission of pathogens to humans. After acute enteritis, postinfectious disorders affecting the nervous system, joints or intestines may occur. Immunodeficiency concomitant diseases of infected patients cause bacteremia, which causes septicemia and vascular inflammation. Prevention of human infection is achieved through hygienic measures aimed at reducing pathogenic contamination of food products. Molecular targets for the treatment and prevention of campylobacteriosis and Helicobacteriosis include pathogenicity and virulence factors of bacteria involved in motility, adhesion, invasion, oxygen detoxification, acid resistance and biofilm formation. Drugs that suppress pro-inflammatory immune reactions caused by Campylobacter and Helicobacter endotoxin lipooligosaccharide have recently added to this list of treatment methods. To reduce the risk of both antimicrobial resistance and the post-infectious effects of acute enteritis, new pharmaceutical approaches will combine anti-pathogenic and anti-inflammatory effects. This review presents the latest methods and trends in the fight against Campylobacter and Helicobacter infections, as well as molecular targets for prevention and treatment.
References
Ahasan, M. S., Waltzek, T. B., Huerlimann, R., and Ariel, E. (2018). Comparative analysis of gut bacterial communities of green turtles (Chelonia mydas) pre-hospitalization and post-rehabilitation by high-throughput sequencing of bacterial 16S rRNA gene. Microbiol. Res. 207, 91–99. doi: 10.1016/j.micres.2017.11.010
Atherton, J. C., and Blaser, M. J. (2009). Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J. Clin. Invest. 119, 2475–2487. doi: 10.1172/JCI38605
Baily, J. L., Méric, G., Bayliss, S., Foster, G., Moss, S. E., and Watson, E. (2014). Evidence of land-sea transfer of the zoonotic pathogen Campylobacter to a wildlife marine sentinel species. Mol. Ecol. 24, 208–221. doi: 10.1111/mec.13001
Benejat, L., Gravet, A., Sifré, E., Ben Amor, S., Quintard, B., Mégraud, F., et al. (2014). Characterization of a Campylobacter fetus-like strain isolated from the faeces of a sick leopard tortoise (Stigmochelys pardalis) using matrix-assisted laser desorption/ionization time of flight as an alternative to bacterial 16S rDNA phylogeny. Lett. Appl. Microbiol. 58, 338–343. doi: 10.1111/lam.12194
Blaser, M. J., Newell, D. G., Thompson, S. A., and Zechner, E. L. (2008). “Pathogenesis of Campylobacter fetus,” in Campylobacter, eds I. Nachamkin, C. M. Szymanski, and M. J. Blaser (Washington, DC: ASM Press),401–428.
Briones, V., Téllez, S., Goyache, J., Ballesteros, C., del Pilar Lanzarot, M., Domínguez, L., et al. (2004). Salmonella diversity associated with wild reptiles and amphibians in Spain. Environ. Microbiol. 6, 868–871.
Polk, D. B., and Peek, R. M. Jr. (2010). Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer 10, 403–414. doi: 10.1038/nrc2857
Gundogdu, O., and Wren, B. W. (2020). Microbe profile: Campylobacter jejuni–survival instincts. Microbiology 166, 230–232. doi: 10.1099/mic.0.000906
Amour, C., Gratz, J., Mduma, E., Svensen, E., Rogawski, E. T., Mcgrath, M., et al. (2016). Epidemiology and impact of Campylobacter infection in children in 8 low-resource settings: results from the MAL-ED study. Clin. Infect. Dis. 63, 1171–1179. doi: 10.1093/cid/ciw542
Salama, N. R., Hartung, M. L., and Muller, A. (2013). Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat. Rev. Microbiol. 11, 385–399. doi: 10.1038/nrmicro3016
Brown, L. M. (2000). Helicobacter pylori: epidemiology and routes of transmission. Epidemiol. Rev. 22, 283–297. doi: 10.1093/oxfordjournals.epirev.a018040
Gundogdu, O., Da Silva, D. T., Mohammad, B., Elmi, A., Wren, B. W., Van Vliet, A. H., et al. (2016). The Campylobacter jejuni oxidative stress regulator RrpB is associated with a genomic hypervariable region and altered oxidative stress resistance. Front. Microbiol. 7:2117. doi: 10.3389/fmicb.2016.02117
van den Bruele, T., Mourad-Baars, P.E.C., Claas, E.C.J. et al. Campylobacter jejuni bacteremia and Helicobacter pylori in a patient with X-linked agammaglobulinemia. Eur J Clin Microbiol Infect Dis 29, 1315–1319 (2010). https://doi.org/10.1007/s10096-010-0999-7
Moran AP. The role of endotoxin in infection: Helicobacter pylori and Campylobacter jejuni. Subcell Biochem. 2010;53:209-40. doi: 10.1007/978-90-481-9078-2_10.
Corcionivoschi N, Thompson SA and Gundogdu O (2021) Editorial: Developments in Campylobacter, Helicobacter & Related Organisms Research – CHRO 2019. Front. Microbiol. 11:622582. doi: 10.3389/fmicb.2020.622582
Oren, A., Garrity, G. M. (2021). Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 71 (10), 5056. doi: 10.1099/ijsem.0.005056
Waite, D. W., Vanwonterghem, I., Rinke, C., Parks, D. H., Zhang, Y., Takai, K., et al. (2017). Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to epsilonbacteraeota (phyl. nov.). Front. Microbiol. 8. doi: 10.3389/fmicb.2017.00682
Igwaran, A., Okoh, A. I. (2019). Human campylobacteriosis: A public health concern of global importance. Heliyon 5 (11), e02814. doi: 10.1016/j.heliyon.2019.e02814
Same, R. G., Tamma, P. D. (2018). Campylobacter infections in children. Pediatr. Rev. 39 (11), 533–541. doi: 10.1542/pir.2017-0285
Hooi, J. K. Y., Lai, W. Y., Ng, W. K., Suen, M. M. Y., Underwood, F. E., Tanyingoh, D., et al. (2017). Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153 (2), 420–429. doi: 10.1053/j.gastro.2017.04.022
Chmiela, M., Kupcinskas, J. (2019). Review: Pathogenesis of Helicobacter pylori infection. Helicobacter 24 Suppl 1, e12638. doi: 10.1111/hel.12638
Gilbert MJ, Duim B, Zomer AL and Wagenaar JA (2019) Living in Cold Blood: Arcobacter, Campylobacter, and Helicobacter in Reptiles. Front. Microbiol. 10:1086. doi: 10.3389/fmicb.2019.01086
Corcionivoschi N, Thompson SA, Gundogdu O. Editorial: Developments in Campylobacter, Helicobacter & Related Organisms Research - CHRO 2019. Front Microbiol. 2021 Jan 8;11:622582. doi: 10.3389/fmicb.2020.622582.
Naughton JAMariño K, Dolan BReid C, Gough R, Gallagher ME, Kilcoyne M, Gerlach JQ, Joshi L, Rudd P, Carrington S, Bourke B, Clyne M 2013. Divergent Mechanisms of Interaction of Helicobacter pylori and Campylobacter jejuni with Mucus and Mucins. Infect Immun 81:.https://doi.org/10.1128/iai.00415-13
Foynes, S., Dorrell, N., Ward, S. J., Stabler, R. A., McColm, A. A., Rycroft, A. N., et al. (2000). Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect. Immun. 68 (4), 2016–2023. doi: 10.1128/IAI.68.4.2016-2023.2000
Delany, I., Spohn, G., Rappuoli, R., Scarlato, V. (2002). Growth phase-dependent regulation of target gene promoters for binding of the essential orphan response regulator HP1043 of Helicobacter pylori. J. Bacteriol 184 (17), 4800–4810. doi: 10.1128/JB.184.17.4800-4810.2002
Lertsethtakarn, P., Ottemann, K. M., Hendrixson, D. R. (2011). Motility and chemotaxis in Campylobacter and Helicobacter. Annu. Rev. Microbiol. 65, 389–410. doi: 10.1146/annurev-micro-090110-102908
McKenna A., Ijaz U. Z., Kelly C., Linton M., Sloan W. T., Green B. D., et al.. (2020). Impact of industrial production system parameters on chicken microbiomes: mechanisms to improve performance and reduce Campylobacter. Microbiome 8:128. 10.1186/s40168-020-00908-8
Polk D. B., Peek R. M., Jr. (2010). Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer 10, 403–414. 10.1038/nrc2857
Quaglia N. C., Dambrosio A. (2018). Helicobacter pylori: a foodborne pathogen? World J. Gastroenterol. 24, 3472–3487. 10.3748/wjg.v24.i31.3472
Salama N. R., Hartung M. L., Muller A. (2013). Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat. Rev. Microbiol. 11, 385–399. 10.1038/nrmicro3016
Sibanda N., McKenna A., Richmond A., Ricke S. C., Callaway T., Stratakos A. C., et al.. (2018). A review of the effect of management practices on Campylobacter prevalence in poultry farms. Front. Microbiol. 9:2002. 10.3389/fmicb.2018.02002
Tegtmeyer N., Wessler S., Necchi V., Rohde M., Harrer A., Rau T. T., et al.. (2017). Helicobacter pylori employs a unique basolateral type IV secretion mechanism for CagA delivery. Cell Host Microbe 22, 552.e5–560.e5. 10.1016/j.chom.2017.09.005
Casado J, Lanas Á, González A. Two-component regulatory systems in Helicobacter pylori and Campylobacter jejuni: Attractive targets for novel antibacterial drugs. Front Cell Infect Microbiol. 2022 Aug 24;12:977944. doi: 10.3389/fcimb.2022.977944.
Heimesaat MM, Backert S, Alter T, Bereswill S. Molecular Targets in Campylobacter Infections. Biomolecules. 2023; 13(3):409. https://doi.org/10.3390/biom13030409
Rokkas T., Rokka A., Portincasa P. (2017). A systematic review and meta-analysis of the role of Helicobacter pylori eradication in preventing gastric cancer. Ann. Gastroenterol. 30 (4), 414–423. doi: 10.20524/aog.2017.0144
Nam S. Y., Park B. J., Nam J. H., Kook M. C. (2019). Effect of Helicobacter pylori eradication and high-density lipoprotein on the risk of de novo gastric cancer development. Gastrointest Endosc 90 (3), 448–456 e441. doi: 10.1016/j.gie.2019.04.232
Mizuno S., Yokoyama K., Nukada T., Ikeda Y., Hara S. (2022). Campylobacter jejuni bacteremia in the term infant a rare cause of neonatal hematochezia. Pediatr. Infect. Dis. J. 41 (4), e156–e157. doi: 10.1097/INF.0000000000003453
Min, K., An, D.R., Yoon, HJ. et al. Peptidoglycan reshaping by a noncanonical peptidase for helical cell shape in Campylobacter jejuni. Nat Commun 11, 458 (2020). https://doi.org/10.1038/s41467-019-13934-4