Vol. 3 No. 11 (2025) ISSN: 2995-5483

The Importance of Problem-Based Learning in Teaching Medical Chemistry

Murodova Shakhnoza Ibod qizi

Lecturer, Asia International University

Abstract: This article highlights the didactic and practical significance of applying problem-based learning (PBL) technology in teaching medical chemistry. Problem-based learning fosters students' independent thinking, research skills, and professional competencies, while enabling them to connect theoretical knowledge with practical, real-life examples in medicine.

Introduction

In the modern medical education system, the transition from traditional teaching approaches to interactive and problem-based learning technologies has become a pressing issue. In particular, the subject of medical chemistry requires the integration of theoretical knowledge with clinical practice. In this process, problem-based learning serves as an effective method that enhances students curiosity, analytical reasoning, and cognitive engagement in the learning process.

Main Part

Problem-based learning (PBL) is a pedagogical method that engages students in active thinking and independent reasoning through problem situations intentionally created by the instructor [1]. In medical chemistry, this approach helps learners to deeply understand and apply key theoretical concepts.

For instance, while studying topics such as "Protein Structure and Enzyme Activity," "Acid-Base Balance," and "Electrolyte Solutions," students may be presented with problem-oriented questions such as:

"What medical consequences can occur due to changes in the body's pH?"

"What factors affect enzyme activity?" [2]

These questions encourage learners to analyze problems critically and link theoretical knowledge with practical applications in medical contexts.

Advantages of Problem-Based Learning

- 1. Develops students' independent thinking and research skills.
- 2. Connects the subject with medical practice and increases its practical relevance.
- 3. Enhances analytical reasoning, logical analysis, and evidence-based decision-making abilities.
- 4. Encourages active participation of learners in the educational process [3].

Hence, the use of problem-based methods in organizing practical lessons significantly increases the effectiveness of the educational process. As medical chemistry is an integrative discipline, explaining chemical laws and processes through real-life situations ensures stronger retention and deeper comprehension among students.

http://medicaljournals.eu/

Vol. 3 No. 11 (2025) ISSN: 2995-5483

Methods of Solving Problem Situations

The main methods include:

Research-based method

Inductive method (from specific to general)

Deductive method (from general to specific)

Project and modeling approaches [4]

Tools for problem-solving:

Experimentation

Information analysis

Observation

Modeling

In this approach, the teacher acts as a problem setter, facilitator, and analyst, guiding students toward independent solutions. This enhances learning motivation and helps students consolidate their knowledge effectively.

Example of a Problem Situation

When studying the topic "Toxic Effects of Inorganic Elements," using problem-based scenarios increases understanding.

For example:

A student named X regularly consumes foods containing excessive amounts of arsenic (As). The daily safe intake is 1 mg, but the student consumes 2–3 mg per day. Arsenic mainly accumulates in erythrocytes, the spleen, and protein tissues. A body content of 0.1–0.3 g may cause death. As(III) compounds (arsenites) inhibit the –SH groups of enzymes and proteins, reducing their activity. Arsine gas (AsH₃) is particularly toxic; it inhibits heme activity, leading to erythrocyte hemolysis, blockage of renal tubules, and jaundice [5].

Based on this situation, the following problem-based questions can be presented:

- 1. How many days would it take for the student to reach a lethal dose of arsenic?
- 2. What therapeutic methods are used to treat heavy metal poisoning?
- 3. What is chelation therapy?
- 4. For what purpose are antidotes administered?

Experimental Results:

Grade Levels Excellent Good Satisfactory	Practical group	Number of students	Control group		Experimental group	
			Number	%	Number	%
		24	12 8 4	50 33 17	13 8 3	53 33 14

http://medicaljournals.eu/

Vol. 3 No. 11 (2025) ISSN: 2995-5483

Problem-based learning is an effective modern pedagogical approach that enhances the quality of teaching medical chemistry. Through this method, students acquire knowledge not by memorization, but by solving real-life scientific problems. As a result, they develop critical and analytical thinking, scientific reasoning, and professional competence. Furthermore, this approach bridges theoretical chemistry with clinical practice, helping students to make evidence-based decisions in medical contexts.

In summary, implementing problem-based learning in medical chemistry education promotes creativity, analytical skills, and readiness for professional medical practice.

References

- 1. Karimova, R., & Toʻxtayeva, D. Pedagogical Technologies and Innovative Teaching Methods. Tashkent: Fan, 2020.
- 2. Qodirov, A.Medical Chemistry: A Study Guide. Tashkent: Tibbiyot Publishing, 2021.
- 3. Ziyayeva, N. Theoretical Foundations of Problem-Based Teaching Technology. Uzbekistan Journal of Pedagogy, 2022.
- 4. Ixtiyarova, G.A., Bekchanov, D.J., & Ahadov, M.Sh. The Importance of Modern Technologies in Teaching Chemistry. Tashkent, 2020.
- 5. Alimkhodjayeva, N.T., Suleymanova, G.G., Ikramova, Z.A., & Tadjiyeva, X.S. Medical Chemistry. Part 1. Tashkent, 2024.

http://medicaljournals.eu/