

Specificity of the Condition of the Oral Cavity of Patients with Diabetes

Qurbanova Zilola Zarifovna., Turaeva Feruza Abdurashidovna

Bukhara State Medical Institute Named After Abu Ali Ibn Sino, Bukhara, Uzbekistan

Relevance. Patients with uncontrolled diabetes have oral complications such as xerostomia. Changes in collagen metabolism and, consequently, changes in periodontal fibers cause periodontal diseases, which are caused by the presence of microbial plaques and poor oral hygiene in most diabetics. There are numerous studies showing that the prevalence, progression, severity, and degree of chronic oral diseases increase significantly in DM patients. The main oral complications associated with diabetes include gum infection, periodontal disease, dental caries, dry mouth, bacterial infections and fungus, bad breath, and prolonged wound healing from dental procedures. Belazi et al. In their research, they found that the growth rate of fungi of the genus *Candida* was significantly higher in people with diabetes than in the group of healthy people. The knowledge of diabetics about periodontal diseases, dry mouth and related preventive measures to prevent oral diseases is of great importance for maintaining the health of the entire body. Diabetic patients and their families should learn and practice new healthy lifestyle skills, including controlling blood sugar levels, following medication instructions, following a proper diet, physical activity, and more. These skills are very important both in controlling diabetes and in preventing or delaying its complications. Oral fluid plays an important role in ensuring the integrity of the oral mucosa due to the presence in it of more than 60 different enzymes with bactericidal properties that form specific and nonspecific resistance in the oral cavity [1.3.5.7.9.11.13.15.17.21.23.25.27].

A large amount of data has been accumulated that indicates the existence of a link between elevated levels of free radicals and insulin resistance, which is not only one of the key links in the pathogenesis of diabetes, but also a determining factor in the metabolic syndrome. The level of lactate in saliva in diabetics is higher than in healthy people. In healthy people and in advanced cases, it can reach up to 5 times the normal level, which is a contributing factor to the development of caries. In addition, diabetes affects almost all tissues and organs of the body, including the hard and soft tissues of the oral cavity, manifested by a host of complications. The first step of a pediatric dentist should be to get a comprehensive systemic history of the disease from the child, his parents and the pediatric endocrinologist, teach them how to control individual glucose levels, and recognize the triggers of hypo- or hyperglycemia. Since dental caries is a multifactorial disease, the amount of *Streptococcus mutans* (*S. mutans*) and *lactobacilli* in saliva is higher in patients with active caries, whether diabetic or not, and although some factors in DM1 may increase the risk of caries, others may reduce it. Caries-causing bacteria, in particular *S. mutans* and *Lactobacillus casei* may be higher in DM patients, especially in those with poor diabetic control, and there is also a positive correlation between caries and salivary glucose levels.

The World Health Organization (WHO) announces that the prevalence of dental caries is growing rapidly worldwide, and that early childhood caries (RDC) is a serious health problem. RDC is a rampant caries form of the primary dentition and is the current and most common term used to describe dental caries in very young children. It is defined as the presence of one or more decayed, missing, or filled tooth surfaces in any primary tooth in a child under the age of six. Any sign of smooth-surface caries in children under the age of three is known as severe RDC (S-ECC). Worldwide, up to 90% of preschool children suffer from this disease. Important factors for oral hygiene are the age of the child who started brushing, the involvement of parents in brushing the child's teeth, and the use of fluoride. The late start of brushing teeth, the lack of regular hygienic behavior of the oral cavity, as a second brush on the part of parents, is not harmful for removing

biofilm and contribute to the development of caries. Vitamin D deficiency may also be associated with an increased risk of caries, including the formation of dental tissue malformations under the influence of calcium metabolism and calcification of teeth in hard tissues. Children with dental malformations such as enamel hypoplasia appear to be at high risk of developing caries and have coined the term hypoplasia-associated early childhood caries. The American Diabetes Association (ADA) reports that 75% of cases of DM1 are diagnosed in people under the age of 18. Children with diabetes differ from adults in many ways, including pre-puberty insulin sensitivity, physical growth, and neurological vulnerability to hypoglycemia. Serious complications of DM1 are diabetic neuropathy, oral manifestations include decreased salivation, difficulty swallowing and speaking, high susceptibility to oral infections, including candidiasis, dental caries, gingivitis, etc., mucositis. Most lipids in saliva are glandular in origin, and some of them are thought to diffuse directly from the blood serum. The concentration of cholesterol in saliva reflects its concentration in blood serum, especially in people with high cholesterol levels. Salivary lipids are bound to proteins, especially glycoproteins, and are rich in proline. Studies prove the connection of salivary peptides and protein compositions with dental caries. However, there is evidence of an association of triglycerides and salivary gland cholesterol. There are no cavities. Periodontal disease is the most studied pathology of the oral cavity, which is associated with diabetes. Pro-inflammatory cytokines produced by gum tissues during periodontitis can enter the bloodstream, which can lead to increased insulin resistance and, as a result, inadequate glycemic control [2.4.6.8.10.12.14.16.18.20.22.24.26].

Dental caries is a multifactorial disease that is related to diet and the rate and composition of salivary flow. These risk factors usually change in patients with diabetes mellitus. However, there is no clear evidence of a link between diabetes and dental caries. Some studies have shown that there is a higher prevalence of caries in diabetic patients compared to non-diabetic groups, others have found a lower prevalence of dental caries, and some have reported similar rates between the groups. Children with DM suffer oral health problems throughout their lives. Poorly controlled glucose levels along with local factors such as poor oral hygiene (due to plaque buildup and calculus) cause oral health problems in these children. Changes in the oral environment lead to an increase in pathogenic microorganisms that cause dental diseases such as caries and gingivitis. In addition, diabetic children have more gum disease than children without diabetes, despite similar plaque levels. One of the predisposing local factors associated with the development and progression of gum inflammation may be tartar. It has been shown that a higher incidence and severity of gingivitis are associated with poor metabolic control in DM. Recently, diabetes treatment has been based on the flexibility of insulin administration and regular monitoring of blood glucose levels, which allows for a less restrictive diet and reduces the importance of dietary factors in the development of caries in patients with diabetes. Lesions of the hard tissues of teeth in DM are not more common than in healthy people and depend on the course of the underlying disease and hereditary factors. A pathohistological examination of the pulp of extracted teeth in individuals with diabetes revealed that it mainly contains large multiple dentils, and the pathomorphological changes are both inflammatory and dystrophic in nature. It was also found that the content of macronutrients such as zinc and copper decreases depending on the duration of the disease, which probably affects tooth resistance to caries.

The compensated form of ADHD will lead to a violation of mineral metabolism, a decrease in the formation and activation of bone destruction, which affect the condition of the hard tissues of the tooth. When mineral metabolism is disrupted, calcium begins to be washed out of the body, followed by fluorine. When calcium and fluoride are insufficient, the enamel becomes brittle. The acid released by bacteria penetrates into it faster, which contributes to the formation of caries, the high rate of its progression is due to the fact that the dentinal tubules are expanded, and this facilitates the spread of the process deeper. Diabetes affects the condition of periodontal tissues, as shown by a number of reviews and studies. With this pathology, there is a violation of regional hemodynamics. Vascular disorders in DM develop not only due to spastic changes in blood vessels and capillaries, but also due to changes in the function of the blood itself. During the above processes, the wall of

blood vessels thickens, which slows down the intake of nutrients and reduces tissue resistance to microorganisms.

The oral environment of sick children does not contain additional factors that reduce the resistance of hard tooth tissues to caries, but the regenerative abilities of the oral mucosa are reduced. Vascular changes in periodontal tissues in children with diabetes occur earlier than in other organs. In the absence of treatment, the signs of periodontitis in childhood diabetes are: bleeding of the gingival papillae, bright red color of the gingival margin, possibly bulging granulations from pathological gingival pockets. Children also have angular cheilitis, geographical tongue, oral candidiasis, chronic catarrhal and recurrent aphthous stomatitis. Structural changes in the salivary glands that develop in diabetes lead to impaired salivation and biochemical changes in the composition of saliva; they cause xerostomia and the development of multiple caries, candidiasis, halitosis.

Conclusion. There was a significantly higher number of carious lesions, both initial and deep, in children with diabetes. In the pathogenesis of diseases of the oral cavity, local immunity factors play an important role, including specific, nonspecific, cellular and humoral, which function in close interrelation. It is known that the amount of salivary lysozyme, which suppresses pathogenic bacteria, is reduced in DM patients by one and a half times compared with healthy ones, while the phagocytic function of polymorphonuclear leukocytes, immunoglobulin M is significantly inhibited and the content of immunoglobulins A and G increases. Numerous studies have established that maintaining the functional capabilities of the immune system contributes to a favorable outcome of dental treatment.

LITERATURE USED

1. AlShwaimi E, Idrees M, Berri Z, El-Sakka H, Kujan O. Association between Diabetes Mellitus and Periodontal Diseases: A Survey of the Opinions of Dental Professionals. *Med Princ Pract.* 2019;28(2):141-149. doi: 10.1159/000495881. Epub 2018 Nov 29. PMID: 30497082; PMCID: PMC6546030.
2. Bassir L, Amani R, Khaneh Masjedi M, Ahangarpour F. Relationship between dietary patterns and dental health in type I diabetic children compared with healthy controls. *Iran Red Crescent Med J.* 2014;16(1):e9684. doi:10.5812/ircmj.9684
3. Carneiro VL, Galvão AA, Fonseca TR, Vitor RWA, Alcantara-Neves NM, Cruz ÁA, Figueiredo CA. Toxoplasma gondii protects from IgE sensitization and induces Th1/Th2 immune profile. *Parasite Immunol.* 2020 Mar;42(3):e12694. doi: 10.1111/pim.12694. Epub 2020 Jan 25. PMID: 31884701.
4. Harding JL, Shaw JE, Peeters A, Cartensen B, Magliano DJ. Cancer risk among people with type 1 and type 2 diabetes: disentangling true associations, detection bias, and reverse causation. *Diabetes Care.* 2015 Feb;38(2):264-70. doi: 10.2337/dc14-1996. Epub 2014 Dec 8. Erratum in: *Diabetes Care.* 2015 Apr;38(4):734-5. PMID: 25488912. *Health Reports* 3, 254-269. doi:10.1007/s40496-016-0099-6.
5. Janem WF, Scannapieco FA, Sabharwal A, et al. Salivary inflammatory markers and microbiome in normoglycemic lean and obese children compared to obese children with type 2 diabetes [published correction appears in *PLoS One.* 2017 Aug 16;12 (8):e0183600]. *PLoS One.* 2017;12(3):e0172647. Published 2017 Mar 2. doi:10.1371/journal.pone.0172647
6. Kotelban A, Moroz P, Hrynevych L, Romaniuk D, Muryniuk T. Microbiological and immunological assessment of a complex of therapeutic-preventive measures for chronic catarrhal gingivitis in children with diabetes mellitus. *Georgian Med News.* 2019;(294):72-76.
7. Li A., Ho T.C. The effectiveness of continuous subcutaneous insulin infusion on quality of life of families and glycaemic control among children with type 1 diabetes: A systematic review. *JBI Libr Syst Rev* 2019; 9: (48): 1–24.

8. Malekmahmoodi M, Shamsi M, Roozbahani N, Moradzadeh R. A randomized controlled trial of an educational intervention to promote oral and dental health of patients with type 2 diabetes mellitus. *BMC Public Health*. 2020;20(1):287. Published 2020 Mar 4. doi:10.1186/s12889-020-8395-4
9. Nikolskaya V.A. Role of biochemical analysis at pathology of stomatological character in the exposure of endocrine diseases, attended with a hyperinsulinemia / V.A. Nikolskaya, Z.N.Memetova // Scientific Notes of Taurida V.I. Vernadsky National University. – Series: Biology, chemistry. – 2018. – Vol. 24 (63), No 4. – P. 177-182.
10. Poyato-Borrego M., Segura-Sampedro J.J., Martín-González J., Torres-Domínguez Y., Velasco-Ortega E., Segura-Egea J.J. High Prevalence of Apical Periodontitis in Patients With Inflammatory Bowel Disease: An Age- and Gender- matched Case-control Study. *Inflamm. Bowel Dis.* 2020;26:273–279. doi: 10.1093/ibd/izz128. [PubMed] [CrossRef] [Google Scholar]
11. Sadeghi R, Taleghani F, Mohammadi S, Zohri Z. The Effect of Diabetes Mellitus Type I on Periodontal and Dental Status. *J Clin Diagn Res.* 2017 Jul;11(7):ZC14-ZC17. doi: 10.7860/JCDR/2017/25742.10153. Epub 2017 Jul 1. PMID: 28893034; PMCID: PMC5583944.
12. Tabatabaei-Malazy O., Nikfar S. Drugs for the treatment of pediatric type 2 diabetes mellitus and related co-morbidities. *Expert Opin Pharmacother* 2016; (4): 43–47.
13. Wang Y, Xing L, Yu H, Zhao L. Prevalence of dental caries in children and adolescents with type 1 diabetes: a systematic review and meta-analysis. *BMC Oral Health.* 2019;19(1):213. Published 2019 Sep 14. doi:10.1186/s12903-019-0903-5
14. Turaeva F. A. Improving the Effectiveness of Treatment of Generalized Periodontitis Using Auto Platelet Mass //American Journal of Medicine and Medical Sciences–USA. – 2020. – T. 8. – C. 576-579.
15. Turaeva F. A. Comprehensive treatment of generalized periodontitis using autotrombocytic mass //The Pharma Innovation Journal N. – 2020. – T. 9. – C. 599-600.
16. Turaeva F. A. Methods of application of autotrombositar mass in paradontic diseases //Academicia: An International Multidisciplinary Research Journal.-Kurukshtetra, India. – 2020. – T. 10. – №. 5. – C. 1814-1817.
17. Turaeva F. A. The experience of conservative treatment of generalized periodontitis using autotearbalance weight //a New day in medicine. – 2020. – №. 2. – C. 30.
18. Turaeva F. A. Platelet-rich auto plasma in the treatment of inflammatory periodontal disease //Asian Journal of Multidimensional Research (AJMR). – 2020. – T. 9. – №. 1. – C. 51-53.
19. Turaeva F. A. et al. Changes in the oral mucosa in COVID 19 //World Bulletin of Social Sciences. – 2021. – T. 2. – C. 63-65.
20. Turaeva F. A. et al. Theoretical Basis of the Action of Autotombocyte Mass //International Journal of Innovations in Engineering Research and Technology. – 2020. – T. 7. – №. 07. – C. 109-116.
21. Turaeva F. A. et al. Microbiological Aspects in Conservative Treatment of Generalized Periodontitis Using Autotrombocytic Mass //JournalNX. – 2020. – C. 469-476.
22. Тураева Ф. А. Опыт консервативного лечения генерализованного пародонита с использованием аутотромбоцитарной массы //Новый день в медицине. – 2020. – №. 2. – С. 551-554.
23. Тураева Ф. А. Эффективность использования современных методов и средств при заболеваниях пародонта //Новый день в медицине. – 2020. – №. 2. – С. 563-566.

24. Turaeva F. A. Oral Mucosa in Coronavirus Infection //Central Asian Journal of Medical and Natural Science. – 2021. – T. 2. – №. 4. – C. 210-213.
25. Turaeva F. A. The Effectiveness of Therapeutic and Prophylactic Measures in Patents with Chronic Generalized Periodontitis in Women During Menopause //Central Asian Journal of Medical and Natural Science. – 2021. – T. 2. – №. 3. – C. 335-339.
26. Abdurashidovna T. F. UDK61. 13058 IMPROVING THE EFFECTIVENESS OF THE TREATMENT OF GENERALIZED PERIODONTITIS USING AUTOTHROMBOCYTE MASS //BBK 91. – 2020. – C. 165.
27. Irismetov M. E. et al. Application of Plate Autoplasma in Treatment of Osteoarthritis and Its Clinical Effectiveness //International Journal on Integrated Education. – T. 4. – №. 3. – C. 458-463.