Evaluation of the Efficiency of Artificial Intelligence in Transforming Anesthesia Practice and Perioperative Management
Downloads
Artificial Intelligence (AI) has emerged as a transformative force in modern anesthesiology and perioperative medicine, offering enhanced precision, efficiency, and patient safety. This study evaluates the efficiency of AI applications in anesthesia and perioperative management, emphasizing machine learning (ML) algorithms, predictive analytics, and real-time monitoring systems. By integrating evidence from recent literature, the research highlights how AI-driven innovations have revolutionized clinical decision-making, patient risk stratification, and postoperative recovery outcomes. Despite promising advancements, challenges such as data integrity, algorithmic transparency, and ethical considerations persist, underscoring the need for standardized frameworks and interdisciplinary collaboration for sustainable AI adoption in anesthesia practice. The study conclude that it must be rigorously evaluated in terms of clinical outcomes, workflow integration, and cost-effectiveness, while also accounting for ethical, legal, and professional implications. It also recommended that AI algorithms must be interpretable and transparent to maintain accountability in critical care environments. Ethical frameworks should guide data usage, privacy protection, and bias mitigation in perioperative decision-making.
1. Ahuja, N. J. (2019). The impact of artificial intelligence in perioperative medicine. Anesthesia & Analgesia, 128(5), 1074–1083.
2. Al Rubh, A. A., & Al Rubh, S. A. (2024). Integrated perioperative care for complex surgical interventions. International Journal of Medical Toxicology & Legal Medicine, 27(3), 419–430.
3. Apfelbaum, J. L., Connis, R. T., Nickinovich, D. G., (2016). Practice guidelines for postanesthetic care: An updated report by the American Society of Anesthesiologists Task Force on Postanesthetic Care. Anesthesiology, 124(3), 535–552.
4. Barash, P. G., Cullen, B. F., Stoelting, R. K., Cahalan, M., & Stock, M. C. (2017). Clinical anesthesia (8th ed.). Wolters Kluwer.
5. Berg, A., Kwon, O.-H., & Lee, J. (2021). Artificial intelligence in anesthesia: Current applications and future directions. Frontiers in Medicine, 8, 645041. [https://doi.org /10.3389/fmed.2021.645041]
6. Butterworth, J. F., Mackey, D. C., & Wasnick, J. D. (2018). Morgan & Mikhail’s clinical anesthesiology (6th ed.). McGraw-Hill.
7. Campion, A. (2024). Understanding anesthesia: The silent guardian of modern medicine. Allied Journal of Medical Research, 8(3), 234
8. Carıkcıoglu, B. (2024). The art and science of anesthesia: A comprehensive overview. Research and Reports in Medical Sciences, 8(1
9. Copeland B. J. (2025). Artificial intelligence. Available at: https://www.britannica.com /technology/artificial-intelligence
10. Craig L. (2024).What is AI? Artificial Intelligence explained. Available at: https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-Intelligence
11. D’Souza, C. (2022). A mini review on general anesthesia and its methodology. Anaesthesiol Clin Sci Res, 6(3), 111. l
12. Fritz, B. A., et al. (2020). Artificial intelligence in perioperative medicine: Applications and challenges. Anesthesiology Clinics, 38(4), 747–759.
13. Gholami, M., et al. (2021). Barriers and facilitators to AI implementation in healthcare: A systematic review. Health Technology, 11(5), 1009–1018.
14. Gómez-Rivas, J., et al. (2023). Ethical and practical implications of AI in anesthesiology. Frontiers in Artificial Intelligence, 6, 1025134.
15. Grant, M. C., & Engelman, D. T. (2025). Overarching themes of ERAS® Society guidelines in adult surgery. Perioperative Medicine, 14, 120.
16. Hashimoto, D. A., et al. (2020). Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology, 132(2), 379–394.
17. Hashimoto, D. A., et al. (2020). Artificial intelligence in anesthesiology: Current techniques, clinical applications, and limitations. Anesthesiology, 132(2), 379–394.
18. Hashimoto, D. A., Witkowski, E. E., Gao, L., Meireles, O. R., & Rosman, G. (2018). Artificial intelligence in anesthesiology: Current techniques, clinical applications, and limitations. Anesthesiology, 129 (4), 730–748.
19. Hashimoto, D. A., Witkowski, E., Gao, L., Meireles, O., & Rosman, G. (2020). Artificial intelligence in clinical practice: Challenges and opportunities. The Lancet Digital Health, 2*(9), e425–e434.
20. Hashimoto, D. A., Witkowski, E., Gao, L., Meireles, O., & Rosman, G. (2020). Artificial intelligence in clinical practice: Challenges and opportunities. The Lancet Digital Health, 2(9), e425–e434.
21. JETIR. (2019). the Concept of Artificial Intelligence. Arun Singh, Department of Computer Science and Engineering Galgotias University, Yamuna Expressway Greater Noida, Uttar Pradesh 6(3), 2349- 5162
22. Jiang, X., et al. (2022). Deep learning in perioperative medicine: Predictive models and clinical implications. Journal of Clinical Anesthesia, 79, 110738.
23. Kim, D. W., et al. (2022). Computer vision for intraoperative guidance and assessment. Surgical Endoscopy, 36(9), 6422–6434.
24. Krittanawong, C., (2021). Integration of artificial intelligence in cardiovascular medicine. European Heart Journal – Digital Health, 2(1), 23–33.
25. Lee, H. C., et al. (2020). Integrating big data and AI in perioperative medicine: Challenges and solutions. Anesthesia & Analgesia, 130(6), 1649–1659.
26. Lee, J., et al. (2023). Machine learning in anesthesia and perioperative medicine: Current trends and future perspectives. British Journal of Anaesthesia, 131(5), 1005–1018.
27. Li, J-S., & Shuang, W-B. (2024). Perioperative nutrition optimization. Frontiers of Nursing, 11(2), 127–137.
28. Lo, C. K., et al. (2021). Data quality challenges for AI in anesthesia and perioperative medicine. British Journal of Anaesthesia, 126(4), 713–720.
29. Lundberg, S. M., et al. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 252–261.
30. Luo, X., et al. (2023). Federated learning for anesthesia AI: Preserving privacy while improving data qujality. Journal of Clinical Monitoring and Computing, 37(1), 201–210.
31. Ma, W., Liu, Y., & Liu, J. (2024). Prehabilitation of surgical patients: a bibliometric analysis. Perioperative Medicine, 13, 48.
32. Maheshwari, K., et al. (2022). Closed-loop anesthesia delivery systems: A review of current applications. Anesthesia & Analgesia, 135(4), 912–921.
33. Mahmood, F., et al. (2022). Cost-effective AI adoption in healthcare: Policy and infrastructure perspectives. Health Informatics Journal, 28(2), 146045822210905.
34. Matheny, M. E., et al. (2020). Artificial intelligence in health care: The hope, the hype, the promise, the peril. JAMA, 323(6), 509–510.
35. Miller, R. D., & Pardo, M. C. (2020). Basics of anesthesia (7th ed.). Elsevier.
36. Nagelhout, J. J., & Plaus, K. L. (2017). Nurse anesthesia (6th ed.). Elsevier.
37. Nair, B. G., et al. (2023). AI-assisted intraoperative monitoring for optimal anesthesia depth. Frontiers in Medicine, 10, 1160558.
38. Peden, C. J., et al. (2022). Ensuring trustworthy AI in anesthesiology through data governance and integration. British Journal of Anaesthesia, 128(5), 818–827.
39. Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380, 1347–1358.
40. Sankar, A., et al. (2021). Improving data integration in anesthesia informatics: A systems approach. Journal of Clinical Anesthesia, 73, 110351.
41. Schneider, P., Kasten, P., & Spies, C. (2021). Digital health technologies in perioperative care: Current applications and future perspectives. Journal of Clinical Monitoring and Computing, 35*(6), 1167–1176.*
42. Schneider, P., Kasten, P., & Spies, C. (2021). Digital health technologies in perioperative care: Current applications and future perspectives. Journal of Clinical Monitoring and Computing, 35(6), 1167–1176.
43. Scott G. (2025). Artificial Intelligence (AI): What It Is, How It Works, Types, and Uses. Available at: https://www.investopedia.com/terms/a/artificial-intelligence-ai.asp
44. Sessler, D. I., Sigl, J., Kelley, S., (2020). Automated control of anesthesia: Closed-loop systems. Anesthesiology Clinics, 38(2), 243–258.
45. Shafqat, A., et al. (2024). Evaluating efficiency and safety of AI in perioperative decision support. Journal of Clinical Anesthesia and Pain Management, 14(2), 75–84.
46. Shillan, D., et al. (2019). Use of machine learning to predict in-hospital mortality: Issues with data quality and integration. BMJ Health & Care Informatics, 26(1), e100016.
47. Shin, M., et al. (2021). Natural language processing applications in perioperative documentation. Journal of Biomedical Informatics, 118, 103786.
48. Staff C. (2024). What Is Artificial Intelligence? Definition, Uses, and Types. Available at: https://www.coursera.org/articles/what-is-artificial-intelligence
49. Tjoa, E., & Guan, C. (2020). A survey on explainable artificial intelligence (XAI): Toward medical transparency. Information Fusion, 67, 82–115.
50. Topol, E. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
51. Topol, E. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
52. Topol, E. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56.
53. Vicente, N. (2023). An overview of anesthesia and its effects. Journal of Perioperative Medicine & Modern Emergencies, 9(1), 194.
54. Wiens, J., et al. (2019). Do no harm: A roadmap for responsible machine learning for health care. Science Translational Medicine, 11(497), eaaw0870.
55. Xu Y., Liu X., Cao X., Huang C., Liu E., Qian S., Liu X., Wu Y., Dong F., Qiu C., Qiu J., Hua K., Su W., Wu J., Zu H., Han Y., Fu C., Yin Z., Liu M., Roepman R., Zhang J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), 100179.
56. Yu, K. H., & Kohane, I. S. (2019). Ethical issues in the use of artificial intelligence in patient care. Nature Medicine, 25(1), 44–46.
57. Yu, K. H., & Kohane, I. S. (2019). Ethical issues in the use of artificial intelligence in patient care. Nature Medicine, 25(1), 44–46.
58. Yu, K. H., et al. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719–731.
59. Zhang, B., Zhou, H., & Wang, X. (2024). Advances in multimodal perioperative hypothermia management. Perioperative Medicine, 13, 107.
60. Zhou, Y., et al. (2021). Predictive analytics for postoperative complications using machine learning. Journal of Clinical Monitoring and Computing, 35(6), 1267–1278.


