Green Synthesis of Iron Oxide Nanoparticles Using Nutmeg Extract, Anti-Oxidant and Anti-Microbial Study
Keywords:
Green synthesis, iron nanoparticles, nutmeg extract, Anti-oxidant, Anti-microbialAbstract
This study presents the green synthesis of iron oxide nanoparticles (IONPs) using nutmeg (Myristica fragrans) extract as a reducing and stabilizing agent. The synthesis was optimized by varying reaction parameters including time, temperature, precursor concentration, extract-to-metal salt ratio, pH, and order of reagent addition. UV–Vis spectroscopy confirmed nanoparticle formation at λ_max = 365 nm, with optimal synthesis conditions determined to be 25 minutes at 30 °C, pH 9, and a 1:1 ratio of extract to iron chloride. The synthesized IONPs were characterized using FTIR, SEM, XRD, and Zeta potential analysis, revealing spherical nanoparticles of 45–53 nm, crystalline α-Fe₂O₃ structure, and moderate stability (zeta potential = −17.4 mV). Antioxidant activity assessed through DPPH assay showed strong radical scavenging by IONPs (85.98%) compared to nutmeg extract (79.08%) and standard Vitamin C (92.99%). Furthermore, antimicrobial tests indicated significant inhibitory effects of IONPs against Gram-positive and Gram-negative bacteria as well as Candida albicans. COX-2 enzyme inhibition assays demonstrated dose-dependent anti-inflammatory potential of both IONPs and nutmeg extract. These findings suggest that nutmeg-mediated IONPs exhibit promising biomedical applications due to their antioxidant, antimicrobial, and anti-inflammatory properties.
References
1. G. KSV, “Green Synthesis of Iron Nanoparticles Using Green Tea leaves Extract,” J. Nanomedine. Biotherapeutic Discov., vol. 07, no. 01, pp. 1–4, 2017, doi: 10.4172/2155-983x.1000151.
2. S. Balakrishnan, I. Sivaji, S. Kandasamy, S. Duraisamy, N. S. Kumar, and G. Gurusubramanian, “Biosynthesis of silver nanoparticles using Myristica fragrans seed (nutmeg) extract and its antibacterial activity against multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates,” Environ. Sci. Pollut. Res., vol. 24, no. 17, pp. 14758–14769, 2017, doi: 10.1007/s11356-017-9065-7.
3. A. C. De Lima Barizão, M. F. Silva, M. Andrade, F. C. Brito, R. G. Gomes, and R. Bergamasco, “Green synthesis of iron oxide nanoparticles for tartrazine and bordeaux red dye removal,” J. Environ. Chem. Eng., vol. 8, no. 1, p. 103618, 2020, doi: 10.1016/j.jece.2019.103618.
4. Y. Liu, X. Jin, and Z. Chen, “The formation of iron nanoparticles by Eucalyptus leaf extract and used to remove Cr (VI),” Sci. Total Environ., vol. 627, pp. 470–479, 2018.
5. X. Jin, Y. Liu, J. Tan, G. Owens, and Z. Chen, “Removal of Cr (VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles,” J. Clean. Prod., vol. 176, pp. 929–936, 2018.
6. N. Naeem, R. Rehman, A. Mushtaq, and B. Ghania, “Nutmeg: A review on uses and biological properties,” Int. J. Chem. Biochem. Sci., vol. 9, no. October, pp. 107–110, 2016, [Online]. Available: https://www.researchgate.net/publication/336825717_Nutmeg_A_review_on_uses_and_biological_properties
7. Jinous Asgarpanah, “Phytochemistry and pharmacologic properties of Myristica fragrans Hoyutt.: A review,” African J. Biotechnol., vol. 11, no. 65, 2012, doi: 10.5897/ajb12.1043.
8. L. C. Razanamahandry, A. C. Nwanya, M. O. Akharame, B. U. Muhammad, S. K. O. Ntwampe, and E. Fosso-Kankeu, “Recovery of iron nanoparticles from mine wastewater using plant extracts of Eucalyptus Globulus, Callistemon Viminalis and Persea Americana,” Minerals, vol. 10, no. 10, pp. 1–15, 2020, doi: 10.3390/min10100859.
9. S. Ilari et al., “Protective effect of antioxidants in nitric oxide/COX-2 interaction during inflammatory pain: the role of nitration,” Antioxidants, vol. 9, no. 12, p. 1284, 2020.
10. H. L. Hsieh and C. M. Yang, “Role of redox signaling in neuroinflammation and neurodegenerative diseases,” Biomed Res. Int., vol. 2013, 2013, doi: 10.1155/2013/484613.
11. R. Nørregaard, T.-H. Kwon, and J. Frøkiær, “Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney,” Kidney Res. Clin. Pract., vol. 34, no. 4, pp. 194–200, 2015.
12. M. S. H. Bhuiyan et al., “Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity,” Heliyon, vol. 6, no. 8, p. e04603, 2020, doi: 10.1016/j.heliyon.2020.e04603.
13. K. M. Ibrahim, R. K. Naem, and A. S. Abd-Sahib, “Antibacterial activity of nutmeg (Myristica fragrans) seed extracts against some pathogenic bacteria,” Al-Nahrain J. Sci., vol. 16, no. 2, pp. 188–192, 2013.
14. K. M. Ibrahim, R. K. Naem, and A. S. Abd-Sahib, “Antibacterial Activity of Nutmeg (Myristica fragrans) Seed Extracts Against Some Pathogenic Bacteria,” J. Al-Nahrain Univ. Sci., vol. 16, no. 2, pp. 188–192, 2013, doi: 10.22401/jnus.16.2.29.
15. K. A. L. I. DEHGHAN, I. Rasooli, M. B. Rezaee, and P. Owlia, “Antioxidative properties and toxicity of white rose extract,” 2011.
16. I. E. Juárez-Rojop, C. A. Tovilla-Zárate, and D. E. Aguilar-Domínguez, “Roade la Fuente LF, Lobato-García CE, Blé-Castillo JL, López-Meraz L, Díaz-Zagoya JC, Bermúdez-Ocaña DY. Phytochemical screening and hypoglycemic activity of Carica papaya leaf in streptozotocin-induced diabetic rats,” Rev. Bras. Farmacogn., vol. 24, pp. 341–347, 2014.
17. B. Ahmmad et al., “Green synthesis of mesoporous hematite (α-Fe2O 3) nanoparticles and their photocatalytic activity,” Adv. Powder Technol., vol. 24, no. 1, pp. 160–167, 2013, doi: 10.1016/j.apt.2012.04.005.
18. H. S. Devi, M. A. Boda, M. A. Shah, S. Parveen, and A. H. Wani, “Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity,” Green Process. Synth., vol. 8, no. 1, pp. 38–45, 2019, doi: 10.1515/gps-2017-0145.
19. M. Khan et al., “Plant extracts as green reductants for the synthesis of silver nanoparticles: Lessons from chemical synthesis,” Dalt. Trans., vol. 47, no. 35, pp. 11988–12010, 2018.
20. V. C. Karade et al., “A green approach for the synthesis of α-Fe2O3 nanoparticles from Gardenia resinifera plant and it’s In vitro hyperthermia application,” Heliyon, vol. 5, no. 7, p. e02044, 2019.
21. C. Mystrioti, T. D. Xanthopoulou, P. Tsakiridis, N. Papassiopi, and A. Xenidis, “Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction,” Sci. Total Environ., vol. 539, pp. 105–113, 2016.
22. S. O. Aisida et al., “Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications,” Appl. Nanosci., vol. 10, no. 1, pp. 305–315, 2020, doi: 10.1007/s13204-019-01099-x.
23. W. J. Aziz, M. A. Abid, D. A. Kadhim, and M. K. Mejbel, “Synthesis of iron oxide (β-fe2o3) nanoparticles from Iraqi grapes extract and its biomedical application,” IOP Conf. Ser. Mater. Sci. Eng., vol. 881, no. 1, 2020, doi: 10.1088/1757-899X/881/1/012099.
24. E. Üstün, S. C. Önbaş, S. K. Çelik, M. Ç. Ayvaz, and N. Şahin, “Green synthesis of iron oxide nanoparticles by using ficus carica leaf extract and its antioxidant activity,” Biointerface Res. Appl. Chem., vol. 12, no. 2, pp. 2108–2116, 2022, doi: 10.33263/BRIAC122.21082116.
25. E. Rostamizadeh, A. Iranbakhsh, A. Majd, S. Arbabian, and I. Mehregan, “Green synthesis of Fe2O3 nanoparticles using fruit extract of Cornus mas L. and its growth-promoting roles in Barley,” J. Nanostructure Chem., vol. 10, no. 2, pp. 125–130, 2020, doi: 10.1007/s40097-020-00335-z.
26. T. Shahwan et al., “Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes,” Chem. Eng. J., vol. 172, no. 1, pp. 258–266, 2011.
27. S. Bhattacharya, I. Saha, A. Mukhopadhyay, D. Chattopadhyay, and U. Chand, “Role of nanotechnology in water treatment and purification: Potential applications and implications,” Int. J. Chem. Sci. Technol., vol. 3, no. 3, pp. 59–64, 2013.
28. I. Bibi et al., “Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye,” J. Mater. Res. Technol., vol. 8, no. 6, pp. 6115–6124, 2019, doi: 10.1016/j.jmrt.2019.10.006.
29. S. Kanagasubbulakshmi and K. Kadirvelu, “Green synthesis of Iron oxide nanoparticles using Lagenaria siceraria and evaluation of its Antimicrobial activity,” Def. Life Sci. J., vol. 2, no. 4, p. 422, 2017, doi: 10.14429/dlsj.2.12277.
30. V. G. Viju Kumar and A. A. Prem, “Green synthesis and characterization of iron oxide nanoparticles using phyllanthus niruri extract,” Orient. J. Chem., vol. 34, no. 5, pp. 2583–2589, 2018, doi: 10.13005/ojc/340547.
31. S. Suresh, S. Karthikeyan, and K. Jayamoorthy, “Effect of bulk and nano-Fe2O3 particles on peanut plant leaves studied by Fourier transform infrared spectral studies,” J. Adv. Res., vol. 7, no. 5, pp. 739–747, 2016.
32. A. Lassoued, M. S. Lassoued, B. Dkhil, S. Ammar, and A. Gadri, “RETRACTED ARTICLE: Photocatalytic degradation of methylene blue dye by iron oxide (α-Fe 2 O 3) nanoparticles under visible irradiation,” J. Mater. Sci. Mater. Electron., vol. 29, no. 10, pp. 8142–8152, 2018.
33. C. H. Ramamurthy et al., “The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties,” Colloids Surfaces B Biointerfaces, vol. 102, pp. 808–815, 2013, doi: 10.1016/j.colsurfb.2012.09.025.
34. J. Asgarpanah and N. Kazemivash, “Phytochemistry and pharmacologic properties of Myristica fragrans Hoyutt.: A review,” African J. Biotechnol., vol. 11, no. 65, pp. 12787–12793, 2012.
35. A. K. Mittal, J. Bhaumik, S. Kumar, and U. C. Banerjee, “Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential,” J. Colloid Interface Sci., vol. 415, pp. 39–47, 2014, doi: 10.1016/j.jcis.2013.10.018.
36. H. E. A. Mohamed et al., “Bio-redox potential of Hyphaene thebaica in bio-fabrication of ultrafine maghemite phase iron oxide nanoparticles (Fe2O3 NPs) for therapeutic applications,” Mater. Sci. Eng. C, vol. 112, no. March, p. 110890, 2020, doi: 10.1016/j.msec.2020.110890.
37. C. López-Alarcón and A. Denicola, “Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays,” Anal. Chim. Acta, vol. 763, pp. 1–10, 2013, doi: 10.1016/j.aca.2012.11.051.
38. H. Dorman and S. G. Deans, “Antimicrobial agents from plants: antibacterial activity of plant volatile oils,” J. Appl. Microbiol., vol. 88, no. 2, pp. 308–316, 2000.
39. E. Ceylan and D. Y. C. Fung, “Antimicrobial activity of spices 1,” J. Rapid Methods Autom. Microbiol., vol. 12, no. 1, pp. 1–55, 2004.
40. Z. Luo, Y. Qin, and Q. Ye, “Effect of nano‐TiO2‐LDPE packaging on microbiological and physicochemical quality of Pacific white shrimp during chilled storage,” Int. J. Food Sci. Technol., vol. 50, no. 7, pp. 1567–1573, 2015.
41. P. Jaiswal et al., “ARBS Annual Review of Biomedical Sciences Biological Effects of Myristica fragrans,” ARBS Annu. Rev. Biomed. Sci., pp. 21–29, 2009.
42. A. Takikawa et al., “Antimicrobial activity of nutmeg against Escherichia coli O157,” J. Biosci. Bioeng., vol. 94, no. 4, pp. 315–320, 2002.
43. P. Rani and N. Khullar, “Antimicrobial evaluation of some medicinal plants for their anti‐enteric potential against multi‐drug resistant Salmonella typhi,” Phyther. Res. An Int. J. Devoted to Pharmacol. Toxicol. Eval. Nat. Prod. Deriv., vol. 18, no. 8, pp. 670–673, 2004.