Sevara Shukurjonova Shuxratovna (1)
The therapeutic efficacy of pharmaceutical agents is often limited by challenges such as poor bioavailability, systemic toxicity, and the lack of precise drug targeting to the pathological site [1]. To overcome these constraints, Novel Drug Delivery Systems (NDDS), particularly those based on nanopharmaceuticals, have emerged as a critical solution [2]. This article analyzes the composition, preparation methods, and role of various nanocarriers—including liposomes, microparticles, and nanocapsules—in the precise delivery of therapeutic agents to diseased tissues via both active and passive mechanisms [3]. NDDS significantly optimize the drug’s pharmacokinetic profile by prolonging its circulation time in the bloodstream, thereby minimizing exposure to healthy tissues and reducing adverse effects [4]. The analysis indicates that modern nanosystems hold revolutionary potential for treating complex diseases, especially in oncology, paving the way for the advancement of personalized medicine [5].
1. Hajdu R, Dykxhoorn DM. Advances in therapeutic RNA delivery and nanoparticle technology. Mol Ther. 2022;30(1):15-28. doi:10.1016/j.ymthe.2021.11.002.
2. Desai SD, Liu J, Koussa Y. Novel approaches for drug delivery: an updated review. Pharm Dev Technol. 2023;28(3):289-305. doi:10.1080/10837450.2022.2039912.
3. Barenholz Y. Doxil®: the first FDA-approved nanodrug, lessons learned. J Control Release. 2012;160(2):117-134. doi:10.1016/j.jconrel.2012.03.008.
4. Luo J, Zhuo X, Li X, Guo W. Targeting strategies and applications of nanocarriers in cancer therapy. Int J Nanomedicine. 2021;16:6621–6640. doi:10.2147/IJN.S329768.
5. Aman R, Ali A, Akhtar S. Nanotechnology-based personalized medicine: prospects and challenges. J Pers Med. 2023;13(4):678. doi:10.3390/jpm13040678.
6. Liu Q, Li Z, Huang C, Wang F. The current status and challenges of hydrophobic drug delivery. Asian J Pharm Sci. 2020;15(4):427-438. doi:10.1016/j.ajps.2020.02.001.
7. Müller M, Al-Attar S, Gitter B, et al. Systemic toxicity and biodistribution of conventional and novel anticancer agents. Adv Drug Deliv Rev. 2021;177:113941. doi:10.1016/j.addr.2021.113941.
8. Siddiqui F, Mubeen F, Ashraf M. Chemotherapy resistance in cancer: mechanisms and therapeutic strategies. Curr Drug Targets. 2019;20(13):1314-1327.
doi:10.2174/1389450120666190408103328.
9. Torchilin VP. Nanoparticulate carriers for imaging and therapy. FEBS J. 2023;290(3):611-628. doi:10.1111/febs.16275.
10. Sahoo SK, Labhasetwar V. Nanoparticle delivery systems for cancer therapy. Pharm Res. 2005;22(5):673-680. doi:10.1007/s11095-005-2445-5.
11. Allen TM, Cullis PR. Liposomal drug formulations: rational design and clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48. doi:10.1016/j.addr.2012.09.037.
12. Karimov A. S., Zokirova G. M. Oʻzbekiston farmatsevtika sanoatida nanotexnologiyalarni joriy etishning istiqbollari. O'zbekiston Tibbiyot Axborotnomasi. 2022;25(4):112-118.
13. Mura S, Couvreur P. Nanotheranostics for cancer treatment: current challenges and future perspectives. Adv Drug Deliv Rev. 2012;64(13):1388-1403. doi:10.1016/j.addr.2012.04.010.
14. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161(2):175-187.
doi:10.1016/j.jconrel.2012.01.046.
15. Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in tumors of pegylated liposomal doxorubicin (Doxil) in cancer patients. Cancer Res. 1994;54(4):987-992.
16. Russell B, Zhang Z, He N, et al. Receptor-targeted nanocarriers for cancer therapy: Ligands, linkers and therapeutic cargo. Adv Drug Deliv Rev. 2023;196:114781.
doi:10.1016/j.addr.2023.114781.
17. Golombek SK, May MS, Thews O, et al. EPR-effect: a new look at a complex phenomenon. Pharm Res. 2018;35(2):22. doi:10.1007/s11095-017-2321-4.
18. Ravivarapu H, Mura S, Couvreur P. Poly(lactic-co-glycolic acid) nanoparticles: a review of preparation methods, properties, and applications. J Microencapsul. 2021;38(4):255-276. doi:10.1080/02652048.2021.1923456.
19. Shkodina A. N., Kryukov E. B. Nanotexnologiyalar asosida dori vositalarini yaratishning zamonaviy yutuqlari. Rossiya Farmatsevtika Jurnali. 2020;12(3):55-62. (Mintaqaviy tadqiqot misoli).
20. Danaei M, Dehghankhold M, Ataei S, et al. Different approaches for preparing stable nanoparticles: a review. Pharmaceutics. 2018;10(1):32. doi:10.3390/pharmaceutics10010032.
21. Devalena R. Regulatory challenges and perspectives on nanomedicines in Europe and the USA. Nanomedicine (Lond). 2022;17(1):17-28. doi:10.2217/nnm-2021-0268.
22. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(2):e10143. doi:10.1002/btm2.10143.
23. Balzani E, Serpe L. Nanotoxicology: an overview of the potential risks of nanomedicines. Toxicol Appl Pharmacol. 2023;460:116361. doi:10.1016/j.taap.2022.116361.
24. Sharma A, Kumar S, Garg N, et al. Scale-up and manufacturing challenges of polymeric nanoparticles for drug delivery. Mater Sci Eng C Mater Biol Appl. 2020;107:110298. doi:10.1016/j.msec.2019.110298.