Maternal Risk Factors and its Relation to Congenital Heart Disease
Keywords:
Maternal hypertension, Congenital heart disease, neonatal, atrial septal defectsAbstract
Background
Congenital heart disease (CHD) remains a major cause of neonatal morbidity and mortality, particularly in resource-constrained settings . Maternal risk factors such as hypertension, diabetes mellitus (DM), thyroid disorders, and familial predispositions have been linked to increased incidence of CHD in offspring. However, the magnitude of these associations and their relevance to specific populations require further study.
Aim
This cross-sectional study investigated the prevalence of maternal risk factors and their relationship to CHD among neonates admitted to the Neonatal Intensive Care Unit (NICU) at Baghdad Teaching Hospital.
Methods
Over a six-month period, 3192 newborn was delivered and 673 neonates admitted to the NICU were screened for CHD via clinical examination and echocardiography . Maternal medical records and structured interviews captured data on hypertension, DM, thyroid disorders, other chronic conditions (including systemic lupus erythematosus, idiopathic thrombocytopenic purpura, and asthma), maternal congenital heart disease, a prior sibling with CHD, and maternal pulmonary hypertension . Multivariate logistic regression was used to identify independent predictors of neonatal CHD, adjusting for potential confounders such as maternal age, socioeconomic status, and antenatal care attendance.
Results
A total of 165 neonates (24.5%) were diagnosed with CHD. Maternal hypertension (adjusted odds ratio [aOR]: 2.12, 95% CI: 1.41–3.19) and DM (aOR: 1.75, 95% CI: 1.15–2.67) emerged as strong independent risk factors for CHD (p<0.05). Additionally, neonates with a prior sibling affected by CHD demonstrated significantly higher odds of CHD (aOR: 2.56, 95% CI: 1.18–5.50). Thyroid disorders, chronic autoimmune/respiratory conditions, maternal congenital heart disease, and maternal pulmonary hypertension showed elevated risk in univariate analyses but lost statistical significance in the adjusted models (p>0.05).
Conclusion
Maternal hypertension, DM, and a family history of CHD in a prior sibling constitute significant risk factors for CHD in neonates. These findings highlight the importance of targeted prenatal care, including strict control of chronic conditions and enhanced fetal cardiac monitoring for at-risk mothers. Future research should explore genetic contributions and the complex interactions among multiple maternal risk factors to improve prevention and early detection strategies.
References
1. van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta‐analysis. J Am Coll Cardiol. 2011;58(21):2241‐2247. [DOI] [PubMed] [Google Scholar]
2. Liu Y, Chen S, Zühlke L, et al. Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta‐analysis of 260 studies. Int J Epidemiol. 2019;48(2):455‐463. [DOI] [PMC free article] [PubMed] [Google Scholar]
3. Soares C, Vieira RJ, Costa S, Moita R, Andrade M, Guimarães H. Neurodevelopment outcomes in the first 5 years of the life of children with transposition of the great arteries surgically corrected in the neonatal period: systematic review and meta‐analysis. Cardiol Young. 2023;33(12):2471‐2480. [DOI] [PubMed] [Google Scholar]
4. Baumgartner H, De Backer J, Babu‐Narayan SV, et al. 2020 ESC guidelines for the management of adult congenital heart disease. Eur Heart J. 2021;42(6):563‐645. [DOI] [PubMed] [Google Scholar]
5. Egidy Assenza G, Krieger EV, Baumgartner H, et al. AHA/ACC vs ESC guidelines for management of adults with congenital heart disease: jACC guideline comparison. J Am Coll Cardiol. 2021;78(19):1904‐1918. [DOI] [PubMed] [Google Scholar]
6. Zhao L, Chen L, Yang T, et al. Parental smoking and the risk of congenital heart defects in offspring: an updated meta‐analysis of observational studies. Eur J Prev Cardiol. 2020;27(12):1284‐1293. [DOI] [PubMed] [Google Scholar]
7. Zhang S, Wang L, Yang T, et al. Parental alcohol consumption and the risk of congenital heart diseases in offspring: an updated systematic review and meta‐analysis. Eur J Prev Cardiol. 2020;27(4):410‐421. [DOI] [PubMed] [Google Scholar]
8. Han F, Yang B, Chen Y, et al. Loss of GLTSCR1 causes congenital heart defects by regulating NPPA transcription. Angiogenesis. 2023;26(2):217‐232. [DOI] [PMC free article] [PubMed] [Google Scholar]
9. Williams K, Carson J, Lo C. Genetics of congenital heart disease. Biomolecules. 2019;9(12):879. [DOI] [PMC free article] [PubMed] [Google Scholar]
10. Diller GP, Kempny A, Alonso‐Gonzalez R, et al. Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow‐up at a large tertiary centre. Circulation. 2015;132(22):2118‐2125. [DOI] [PubMed] [Google Scholar]
11. Massarella D, Alonso‐Gonzalez R. Updates in the management of congenital heart disease in adult patients. Expert Rev Cardiovasc Ther. 2022;20(9):719‐732. [DOI] [PubMed] [Google Scholar]
12. Khairy P, Silka MJ, Moore JP, et al. Sudden cardiac death in congenital heart disease. Eur Heart J. 2022;43(22):2103‐2115. [DOI] [PubMed] [Google Scholar]
13. Somerville J. Grown‐up congenital heart disease‐medical demands look back, look forward 2000. Thorac Cardiovasc Surg. 2001;49(1):21‐26. [DOI] [PubMed] [Google Scholar]
14. Homma S, Messé SR, Rundek T, et al. Patent foramen ovale. Nat Rev Dis Primers. 2016;2:15086. [DOI] [PubMed] [Google Scholar]
15. Calvert PA, Rana BS, Kydd AC, Shapiro LM. Patent foramen ovale: anatomy, outcomes, and closure. Nat Rev Cardiol. 2011;8(3):148‐160. [DOI] [PubMed] [Google Scholar]
16. van Vonderen JJ, Roest AA, Siew ML, Walther FJ, Hooper SB, te Pas AB. Measuring physiological changes during the transition to life after birth. Neonatology. 2014;105(3):230‐242. [DOI] [PubMed] [Google Scholar]
17. Sun YP, Homma S. Patent foramen ovale and stroke. Circ J. 2016;80(8):1665‐1673. [DOI] [PubMed] [Google Scholar]
18. Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59(1):17‐20. [DOI] [PubMed] [Google Scholar]
19. Rodriguez CJ, Homma S, Sacco RL, Di Tullio MR, Sciacca RR, Mohr JP. Race‐ethnic differences in patent foramen ovale, atrial septal aneurysm, and right atrial anatomy among ischemic stroke patients. Stroke. 2003;34(9):2097‐2102. [DOI] [PubMed] [Google Scholar]
20. Kuramoto J, Kawamura A, Dembo T, Kimura T, Fukuda K, Okada Y. Prevalence of patent foramen ovale in the Japanese population‐autopsy study. Circ J. 2015;79(9):2038‐2042. [DOI] [PubMed] [Google Scholar]
21. Meier B, Frank B, Wahl A, Diener HC. Secondary stroke prevention: patent foramen ovale, aortic plaque, and carotid stenosis. Eur Heart J. 2012;33(6):705‐713. 713a, 713b. [DOI] [PMC free article] [PubMed] [Google Scholar]
22. Zhang HL, Liu ZH, Luo Q, Wang Y, Zhao ZH, Xiong CM. Paradoxical embolism: experiences from a single center. Chronic Dis Transl Med. 2017;3(2):123‐128. [DOI] [PMC free article] [PubMed] [Google Scholar]
23. d'Audiffret A, Shenoy SS, Ricotta JJ, Dryjski M. The role of thrombolytic therapy in the management of paradoxical embolism. Cardiovasc Surg. 1998;6(3):302‐306. [DOI] [PubMed] [Google Scholar]
24. Ren W, Huang H, Hu H. Optical coherence tomography imaging evidence of thrombus inside the tunnel of patent foramen ovale. Eur Heart J. 2022;43(39):3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
25. Miranda B, Fonseca AC, Ferro JM. Patent foramen ovale and stroke. J Neurol. 2018;265(8):1943‐1949. [DOI] [PubMed] [Google Scholar]
26. Yan C, Li H. Preliminary investigation of In situ thrombus within patent foramen ovale in patients with and without stroke. JAMA. 2021;325(20):2116‐2118. [DOI] [PMC free article] [PubMed] [Google Scholar]
27. Liu X, Sun C, An G, Cao L, Meng X. Case report: hypereosinophilic syndrome vs. patent foramen ovale as etiopathogenetic contributors to stroke. Front Cardiovasc Med. 2023;10:1298063. [DOI] [PMC free article] [PubMed] [Google Scholar]
28. Rigatelli G, Giordan M, Braggion G, et al. Incidence of extracerebral paradoxical embolisms in patients with intracardiac shunts. Cardiovasc Revasc Med. 2007;8(4):248‐250. [DOI] [PubMed] [Google Scholar]
29. Dao CN, Tobis JM. PFO and paradoxical embolism producing events other than stroke. Catheter Cardiovasc Interv. 2011;77(6):903‐909. [DOI] [PubMed] [Google Scholar]
30. Doufekias E, Segal AZ, Kizer JR. Cardiogenic and aortogenic brain embolism. J Am Coll Cardiol. 2008;51(11):1049‐1059. [DOI] [PubMed] [Google Scholar]
31. Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics‐2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007;115(5):e69‐e171. [DOI] [PubMed] [Google Scholar]
32. Cramer SC, Maki JH, Waitches GM, et al. Paradoxical emboli from calf and pelvic veins in cryptogenic stroke. J Neuroimaging. 2003;13(3):218‐223. [PubMed] [Google Scholar]
33. Cramer SC, Rordorf G, Maki JH, et al. Increased pelvic vein thrombi in cryptogenic stroke: results of the Paradoxical Emboli from Large Veins in Ischemic Stroke (PELVIS) study. Stroke. 2004;35(1):46‐50. [DOI] [PubMed] [Google Scholar]
34. Leppert MH, Poisson SN, Carroll JD, et al. Cost‐effectiveness of patent foramen ovale closure versus medical therapy for secondary stroke prevention. Stroke. 2018;49(6):1443‐1450. [DOI] [PMC free article] [PubMed] [Google Scholar]
35. Mojadidi MK, Zaman MO, Elgendy IY, et al. Cryptogenic stroke and patent foramen ovale. J Am Coll Cardiol. 2018;71(9):1035‐1043. [DOI] [PubMed] [Google Scholar]
36. Elgendy AY, Saver JL, Amin Z, et al. Proposal for updated nomenclature and classification of potential causative mechanism in patent foramen ovale‐associated stroke. JAMA Neurol. 2020;77(7):878‐886. [DOI] [PubMed] [Google Scholar]
37. Handke M, Harloff A, Olschewski M, Hetzel A, Geibel A. Patent foramen ovale and cryptogenic stroke in older patients. N Engl J Med. 2007;357(22):2262‐2268. [DOI] [PubMed] [Google Scholar]
38. Meissner I, Khandheria BK, Heit JA, et al. Patent foramen ovale: innocent or guilty? Evidence from a prospective population‐based study. J Am Coll Cardiol. 2006;47(2):440‐445. [DOI] [PubMed] [Google Scholar]
39. Di Tullio MR, Sacco RL, Sciacca RR, Jin Z, Homma S. Patent foramen ovale and the risk of ischemic stroke in a multiethnic population. J Am Coll Cardiol. 2007;49(7):797‐802. [DOI] [PubMed] [Google Scholar]
40. Steiner MM, Di Tullio MR, Rundek T, et al. Patent foramen ovale size and embolic brain imaging findings among patients with ischemic stroke. Stroke. 1998;29(5):944‐948. [DOI] [PubMed] [Google Scholar]
41. Wessler BS, Thaler DE, Ruthazer R, et al. Transesophageal echocardiography in cryptogenic stroke and patent foramen ovale: analysis of putative high‐risk features from the risk of paradoxical embolism database. Circ Cardiovasc Imaging. 2014;7(1):125‐131. [DOI] [PMC free article] [PubMed] [Google Scholar]
42. Agarwal S, Bajaj NS, Kumbhani DJ, Tuzcu EM, Kapadia SR. Meta‐analysis of transcatheter closure versus medical therapy for patent foramen ovale in prevention of recurrent neurological events after presumed paradoxical embolism. JACC Cardiovasc Interv. 2012;5(7):777‐789. [DOI] [PubMed] [Google Scholar]
43. Sanapo L, Donofrio MT, Ahmadzia HK, Gimovsky AC, Mohamed MA. The association of maternal hypertensive disorders with neonatal congenital heart disease: analysis of a United States cohort. J Perinatol. 2020 Nov;40(11):1720-1727.
44. Turc G, Lee JY, Brochet E, Kim JS, Song JK, Mas JL. Atrial septal aneurysm, shunt size, and recurrent stroke risk in patients with patent foramen ovale. J Am Coll Cardiol. 2020;75(18):2312‐2320. [DOI] [PubMed] [Google Scholar]
45. Liu Y, et al. Maternal Gestational Diabetes Mellitus and Congenital Heart Disease in Offspring: A Meta-Analysis. Horm Metab Res. 2024 Aug;
46. Rigatelli G, Aggio S, Cardaioli P, et al. Left atrial dysfunction in patients with patent foramen ovale and atrial septal aneurysm: an alternative concurrent mechanism for arterial embolism? JACC Cardiovasc Interv. 2009;2(7):655‐662. [DOI] [PubMed] [Google Scholar]
47. Postma AV, Bezzina CR, Christoffels VM. Genetics of congenital heart disease: the contribution of the noncoding regulatory genome. J Hum Genet. 2016;61(1):13-19. doi: 10.1038/jhg.2015.98.
48. Grattan MJ, et al. Maternal hypothyroidism may be associated with CHD in offspring. Cardiol Young. 2015 Oct;25(7)