Left Bundle Branch Blockade in Suspected Acute Myocardial Infarction

Authors

  • Nasyrova Zarina Akbarovna DSc, Acting Assistant Professor, Department of Internal Medicine and Cardiology №2 Samarkand State Medical University, Samarkand, Uzbekistan
  • Ergashzoda Erkinjon Ergashevich Resident of the master's program of the Department of Internal Medicine and Cardiology №2 Samarkand State Medical University, Samarkand, Uzbekistan

Keywords:

Left bundle branch blockade, reperfusion, American College of Cardiology, modified Sgarbossa criteria

Abstract

The diagnosis of acute myocardial infarction (AMI) in the setting of left bundle branch block of the Hiss left bundle branch block (LBBB) is challenging for the clinician. Despite current guidelines for therapy, early reperfusion may not be appropriate for all patients with new or suspected new BLNPG because only a minority are due to acute myocardial infarction with true arterial occlusion. Current guidelines recommend that patients with probable myocardial infarction (MI) who have a new or suspected new BLNPG should be considered diagnostic for AMI and should receive early reperfusion therapy. Despite this recommendation, early reperfusion may not be appropriate for all patients with new BLNPG because only a minority are diagnosed with myocardial infarction. The prevalence of false-positive catheterization laboratory activation is frequent among patients with BLNPG, and a significant proportion of patients with BLNPG with AMI do not have a blocked culprit artery at catheterization. Careful clinical evaluation is essential in the diagnosis and management of patients with acute MI and BLNPG. Avoiding unnecessary burdens and risks resulting from early reperfusion therapy can have a significant impact, especially in a center with limited modality options.

References

Hsu S, Houston BA, Tampakakis E, et al. Right Ventricular Functional Reserve in Pulmonary Arterial Hypertension. Circulation. 2016;133(24):2413–2422. doi: 10.1161/CIRCULATIONAHA.116.022082.

Ireland CG, Damico RL, Kolb TM, et al. Exercise RV ejection fraction predicts RV contractile reserve. J Heart Lung Transplant. 2021;40(6):504–512. doi: 10.1016/j.healun.2021.02.005.

Borlaug BA, Reddy YNV. The Role of the Pericardium in Heart Failure: Implications for Pathophysiology and Treatment. JACC Heart Fail. 2019;7(7):574–585. doi: 10.1016/j.jchf.2019.03.021.

Fudim M, Sobotka PA, Dunlap ME. Extracardiac Abnormalities of Preload Reserve: Mechanisms Underlying Exercise Limitation in HFpEF, Autonomic Dysfunction, and Liver Disease. Circ Heart Fail. 2021;14(1):e007308. doi: 10.1161/CIRCHEARTFAILURE.120.007308.

Verbrugge FH, Guazzi M, Testani JM, Borlaug BA. Altered Hemodynamics and End-Organ Damage in Heart Failure: Impact on the Lung and Kidney. Circulation. 2020;142(10):998–1012. doi: 10.1161/CIRCULATIONAHA.119.045409

Wolsk E, Bakkestrøm R, Thomsen JH, et al. The Influence of Age on Hemodynamic Parameters During Rest and Exercise in Healthy Individuals. JACC Heart Fail. 2017;5(5):337–346. doi: 10.1016/j.jchf.2016.10.012.

Reddy YNV, Andersen MJ, Obokata M, et al. Arterial Stiffening With Exercise in Patients With HFpEF. J Am Coll Cardiol. 2017;70(2):136–148. doi: 10.1016/j.jacc.2017.05.029.

Obokata M, Kane GC, Reddy YNV, Olson TP, Melenovsky V, Borlaug BA. Role of Diastolic Stress Testing in the Evaluation for HFpEF: A Simultaneous Invasive-Echocardiographic Study. Circulation. 2017;135(9):825–838. doi: 10.1161/CIRCULATIONAHA.116.024822

Reddy YNV, Obokata M, Wiley B, et al. The haemodynamic basis of lung congestion during exercise in HFpEF. Eur Heart J. 2019;40(45):3721–3730. doi: 10.1093/eurheartj/ehz713.

Houstis NE, Eisman AS, Pappagianopoulos PP, et al. Exercise Intolerance in HFpEF: Diagnosing and Ranking Its Causes Using Personalized O2 Pathway Analysis. Circulation. 2018;137(2):148–161. doi: 10.1161/CIRCULATIONAHA.117.029058.

Hernandez GA, Lemor A, Blumer V, et al. Trends in Utilization and Outcomes of Pulmonary Artery Catheterization in PH With and Without Cardiogenic Shock. Journal of Cardiac Failure. 2019;25(5):364–371. doi: 10.1016/j.cardfail.2019.03.004.

Garan AR, Kanwar M, Thayer KL, et al. Complete Hemodynamic Profiling With Pulmonary Artery Catheters in Cardiogenic Shock Is Associated With Lower In-Hospital Mortality. JACC Heart Fail. 2020;8(11):903–913. doi: 10.1016/j.jchf.2020.08.012.

Rossello X, Bueno H, Gil V, et al. Synergistic Impact of Systolic Blood Pressure and Perfusion Status on Mortality in Acute Heart Failure. Circ Heart Fail. 2021;14(3):e007347. doi: 10.1161/CIRCHEARTFAILURE.120.007347.

Jentzer JC, Burstein B, Van Diepen S, et al. Defining Shock and Preshock for Mortality Risk Stratification in Cardiac Intensive Care Unit Patients. Circ Heart Fail. 2021;14(1):e007678. doi: 10.1161/CIRCHEARTFAILURE.120.007678.

Baran DA, Grines CL, Bailey S, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock. Catheterization and Cardiovascular Interventions. 2019;94(1):29–37. doi: 10.1002/ccd.28329.

Thayer KL, Zweck E, Ayouty M, et al. Invasive Hemodynamic Assessment and Classification of In-Hospital Mortality Risk Among Patients With Cardiogenic Shock. Circ Heart Fail. 2020;13(9):e007099. doi: 10.1161/CIRCHEARTFAILURE.120.007099

Lim HS. Cardiac Power Output Revisited. Circ Heart Fail. 2020;13(10):e007393. doi: 10.1161/CIRCHEARTFAILURE.120.007393.

Basir MB, Schreiber T, Dixon S, et al. Feasibility of early mechanical circulatory support in acute myocardial infarction complicated by cardiogenic shock: The Detroit cardiogenic shock initiative. Catheterization and Cardiovascular Interventions. 2018;91(3):454–461. doi: 10.1002/ccd.27427.

Taleb I, Koliopoulou AG, Tandar A, et al. Shock Team Approach in Refractory Cardiogenic Shock Requiring Short-Term Mechanical Circulatory Support: A Proof of Concept. Circulation. 2019;140(1):98–100. doi: 10.1161/CIRCULATIONAHA.119.040654.

Tehrani BN, Truesdell AG, Sherwood MW, et al. Standardized Team-Based Care for Cardiogenic Shock. J Am Coll Cardiol. 2019;73(13):1659–1669. doi: 10.1016/j.jacc.2018.12.084.

Tongers J, Sieweke J-T, Kühn C, et al. Early Escalation of Mechanical Circulatory Support Stabilizes and Potentially Rescues Patients in Refractory Cardiogenic Shock. Circ Heart Fail. 2020;13(3):e005853. doi: 10.1161/CIRCHEARTFAILURE.118.005853.

Frankfurter C, Molinero M, Vishram-Nielsen JKK, et al. Predicting the Risk of Right Ventricular Failure in Patients Undergoing LVAD Implantation: A Systematic Review. Circ Heart Fail. 2020;13(10):e006994. doi: 10.1161/CIRCHEARTFAILURE.120.006994.

Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK. Pulmonary Artery Pulsatility Index Is Associated With Right Ventricular Failure After LVAD Surgery. Journal of Cardiac Failure. 2016;22(2):110–116. doi: 10.1016/j.cardfail.2015.10.019.

Kang G, Ha R, Banerjee D. Pulmonary artery pulsatility index predicts right ventricular failure after LVAD implantation. J Heart Lung Transplant. 2016;35(1):67–73. doi: 10.1016/j.healun.2015.06.009.

Uriel N, Sayer G, Addetia K, et al. Hemodynamic Ramp Tests in Patients With LVADs. JACC Heart Fail. 2016;4(3):208–217. doi: 10.1016/j.jchf.2015.10.001.

Imamura T, Jeevanandam V, Kim G, et al. Optimal Hemodynamics During LVAD Support Are Associated With Reduced Readmission Rates. Circ Heart Fail. 2019;12(2):e005094. doi: 10.1161/CIRCHEARTFAILURE.118.005094.

Dridi NP, Vishram-Nielsen JKK, Gustafsson F. Exercise Tolerance in Patients Treated With a Durable LVAD: Importance of Myocardial Recovery. Journal of Cardiac Failure. 2021;27(4):486–493. doi: 10.1016/j.cardfail.2020.12.005.

Hsu S, Kambhampati S, Sciortino CM, Russell SD, Schulman SP. Predictors of intra-aortic balloon pump hemodynamic failure in non-acute myocardial infarction cardiogenic shock. Am Heart J. 2018;199:181–191. doi: 10.1016/j.ahj.2017.11.016.

Borlaug BA. Evaluation and management of HFpEF. Nat Rev Cardiol. 2020;17(9):559–573. doi: 10.1038/s41569-020-0363-2.

Obokata M, Reddy YNV, Borlaug BA. Diastolic Dysfunction and HFpEF: Understanding Mechanisms by Using Noninvasive Methods. JACC Cardiovasc Imaging. 2020;13(1 Pt 2):245–257. doi: 10.1016/j.jcmg.2018.12.034.

Pieske B, Tschöpe C, de Boer RA, et al. How to diagnose HFpEF: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019;40(40):3297–3317. doi: 10.1093/eurheartj/ehz641.

D’Alto M, Badesch D, Bossone E, et al. A Fluid Challenge Test for the Diagnosis of Occult Heart Failure. Chest. 2021;159(2):791–797. doi: 10.1016/j.chest.2020.08.019.

Obokata M, Borlaug BA. The strengths and limitations of E/e’ in HFpEF. Eur J Heart Fail. 2018;20(9):1312–1314. doi: 10.1002/ejhf.1250.

Downloads

Published

2024-10-17

How to Cite

Nasyrova Zarina Akbarovna, & Ergashzoda Erkinjon Ergashevich. (2024). Left Bundle Branch Blockade in Suspected Acute Myocardial Infarction. International Journal of Alternative and Contemporary Therapy, 2(10), 65–70. Retrieved from https://medicaljournals.eu/index.php/IJACT/article/view/1058