Green Synthesis of Silver Nanoparticles by using Annona Muricata Extracts and Determine the Inhibitory Effects against Some Pathogenic Bacteria

Authors

  • Ali Hassan Mahmoud College of Dentistry, University of Bilad Alrafidain, Diyala, 32001, Iraq
  • Noor Qasim Rashid College of Dentistry, University of Bilad Alrafidain, Diyala, 32001, Iraq
  • Ali G. Al-Dulimi College of Dentistry, University of Bilad Alrafidain, Diyala, 32001, Iraq
  • Leqaa Taher Kamel Department of Biology, College of education for pure science, University of Diyala, Iraq
  • Baraa Hussein Abdulhadi College of Dentistry, University of Bilad Alrafidain, Diyala, 32001, Iraq
  • Safaa Shehab Ahmed College of Dentistry, University of Bilad Alrafidain, Diyala, 32001, Iraq
  • Fatima Dawood Salman College of Dentistry, University of Bilad Alrafidain, Diyala, 32001, Iraq

Keywords:

Annona muricata, Silver nanoparticles, Green synthesis, Antibacterial activity

Abstract

Silver nanoparticles (AgNPs) were manufactured using the green technique, with silver nitrate (AgNO3) as a precursor and an alcoholic extract of Annona muricata (Graviola) as a reducing agent. The color change from light yellow to dark brown indicated the creation of AgNPs. The average size and shape of the nanoparticles were determined using Atomic Force Microscopy (AFM), which was 60 nm. Scanning Electron Microscopy (SEM) revealed that AgNPs have a spherical and smooth surface area. The wavelength range was examined using ultraviolet-visible spectroscopy (UV-Vis) to monitor the creation of nanoparticles, which revealed a sharp peak at 425 nm. The average crystallite size of AgNPs was determined to be 50 nm using Debye Scherrer's formula and X-ray Diffraction (XRD).

Fourier-transform (FT) infrared spectroscopy (FT-IR) spectra have been used for Silver nanoparticles (AgNPs) to identify the practical groups found in the synthesis method by Annona muricata (Graviola) .

The present study showed that the bacterial isolates which were multi drug resistance to classical antibiotics; distributed on Gram positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram negative (Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis). The antibacterial activity of biosynthesized Ag Nps by ethanolic extract of Annona muricata was showed the maximum diameter inhibitions zone at concentration (100) mg/ml against S. aureus, S. epidermidis, P. aeruginosa, K. pneumoniae, E. coli and P.mirabilis reaching (34, 33, 33 ,31,30,28) mm respectively, while at concentration (12.5) mg/ml lowermost ranges of inhibition zone were recorded.

References

1. Ahmed S, Saifullah, Ahmad M, Swami BL, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci. 2016;9:1-7. DOI: 10.1016/j.jrras.2015.06.006

2. Akintelu, S. A., and Folorunso, A. S. (2019). Characterization and antimicrobial investigation of synthesized silver nanoparticles from Annona muricata leaf extracts. J Nanotechnol Nanomed Nanobio technol, 6, 022.

3. Barbalho S.M. , Goulart R.D. ,Machado F.M. Souza1 M . Bueno1 P. Guiguer E. Araujo1 A., Groppo M. (2012).Annona SP: Plants with Multiple Applications as Alternative Medicine-A Review . Current Bioactive compounds, vol. 8,PP. 277-286.

4. Boisseau, P., and Loubaton, B. (2011). Nanomedicine, nanotechnology in medicine. Comptes Rendus Physique, 12(7), 620-636.‏

5. Bokuniaeva, A. O., and Vorokh, A. S. (2019). Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. In Journal of Physics: Conference Series (Vol. 1410, No. 1, p. 012057). IOP Publishing.‏

6. CLSI. (2020) . Performance standards for antimicrobial susceptibility testing twenty- second informational supplement. M100-S24.Clinical Laboratory Standards Institute . 34 (1): 58-172.

7. Gavamukulya, F. Abou-Elella, F. Wamunyokoli, H.A. ElShemy (2014). Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pac. J. Trop. Med. 7, S355–S363.

8. Gavamukulya, Y., Maina, E. N., Wamunyokoli, F., Meroka, A. M., Madivoli, E. S., El-Shemy, H. A., and Magoma, G. (2019). Synthesis and Characterization of Silver Nanoparticles from Ethanolic Extracts of Leaves of Annona muricata: A Green Nanobiotechnology Appr oach. Biotechnology Journal International, 1-18.‏

9. George V.C. Kumar, D.R. Rajkumar, V. Suresh, P.K. Kumar, R.A. (2012).Quantitative assessment of the relative antineoplastic potential of the n-butanolic leaf extract of Annona muricata Linn. in normal and immortalized human cell lines. Asian Pac. J. Cancer Prev., , 13(2), 699-704.

10. Heer, A.S.K. Mansooria, S.M. and Chamria, N .(2017). Biosynthesis and characterization of Zno nanoparticles using ficus religiosa leaves extract. World J. Phrma. Res., 6 (10): 818-826.

11. Hendiani, S., Abdi-Ali, A., Mohammadi, P., and Kharrazi, S. (2015). Synthesis of silver nanoparticles and its synergistic effects in combination with imipenem and two biocides against biofilm producing Acinetobacter baumannii. Nanomedicine Journal, 2(4): 291-298.

12. Kaur, G.; Singh, T. and Kumar, A. (2012). Nanotechnology: A Review IJEAR.2(1):2348-0033.

13. Kim, H., Lee D., Ryu S., Choi and Lee D. (2011 ).Antibacterial activity of Silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbial Biotechnology) 39(1): 77–85.

14. Kumar B, Angulo Y, Smita K, Cumbal L, Debut A. Capuli cherry-mediated green synthesis of silver nanoparticles under white solar and blue LED light. Particuology. 2015; 24:123-8. DOI: 10.1016/j.partic.2015.05.005 66.

15. Kumar B, Smita K, Cumbal L, Debut A. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J Biol Sci. 2017;24:45-50. DOI: 10.1016/J.SJBS.2015.09.006

16. Madivoli ES, Maina EG, Kairigo PK, Murigi MK, Ogilo JK, Nyangau JO, et al. In vitro antioxidant and antimicrobial activity of Prunus africana (Hook. f.) Kalkman (bark extracts) and Harrisonia abyssinica Oliv. extracts (bark extracts): A comparative study. J Med Plants Econ Dev. 2018;2:1-9. DOI: 10.4102/jomped.v2i1.39

17. Nwinyi OC, Chinedu N.S. and Ajani OO (2008). Evaluation of antibacterial activity of Pisidium guajava and Gongronema latifolium. Journal of Medicinal Plants Research, 2(8): 189-192.

18. Obeidat, M., Shatnawi, M., Al-Alawi, M., Al-Zubi, E., Al-Dmoor, H., Al-Qudah, M., El-Qudah, J. and Qtri, I. (2012). Antimicrobial Activity of Crude Extracts of Same Plant Leaves. Res. J. of Microbiology., 7: 59-67.

19. Otari SV, Pawar SH, Patel SKS, Singh RK, Kim SY, Lee JH, et al. Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: Characterization, antimicrobial activity and toxicity studies. J Microbiol Biotechnol. 2017;27:731-8. DOI: 10.4014/jmb.1610.10019

20. Patra, J. K., and Baek, K. H. (2017). Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Frontiers in microbiology, 8(54): 167.

21. Pincus, D. H. (2011) . Microbial Identification Using the Biomérieux Vitek® 2 System . BioMérieux, Inc. Hazelwood, MO, USA . 1: 1-32.

22. Santhosh SB, Yuvarajan R, Natarajan D. Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector. Parasitol Res. 2015;114:3087-96. DOI: 10.1007/s00436-015-4511-2

23. Shah, D., Fawcett, S. Sharma, S. Tripathy, G. Poinern. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials (Basel). 8, 7278–7308.

24. Shaikh S, Rizvi S.M. and Anis R., Shakil S. (2016). Prevalence of CTX-M resistance marker and integrons among Escherichia coli and Klebsiella pneumoniae isolates of clinical origin. Lett. Appl. Microbiol. 62:419–427.

25. Shaniba, A. Abdul-Aziz, P.R.M. Kumar.(2017). Phyto-mediated synthesis of silver nanoparticles from Annona muricata fruit extract, assessment of their biomedical and photocatalytic potential. Int. J. Pharm. Sci. Res. 8,170-181.

26. Song JY, Beom SK. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng. 2009;32:79-84. DOI: 10.1007/s00449-008-0224-6

27. Umadevi M, Shalini S, Bindhu MR. Synthesis of silver nanoparticle using D. carota extract. Adv Nat Sci Nanosci Nanotechnol. 2012;3:025008. DOI: 10.1088/2043-6262/3/2/025008

28. Viera GH, Mourao JA, Angelo AM, Costa RA,Vieira RH. Antibacterial effect (in vitro) of Moringa oleifera and Annona muricata against gram positive and gram negative bacteria. Rev Inst Med Trop Sao Paulo, 2010; 52:129–132

Downloads

Published

2025-05-26

How to Cite

Mahmoud, A. H., Rashid, N. Q., Al-Dulimi , A. G., Kamel , L. T., Abdulhadi, B. H., Ahmed, S. S., & Salman, F. D. (2025). Green Synthesis of Silver Nanoparticles by using Annona Muricata Extracts and Determine the Inhibitory Effects against Some Pathogenic Bacteria. International Journal of Alternative and Contemporary Therapy, 3(5), 70–78. Retrieved from https://medicaljournals.eu/index.php/IJACT/article/view/1747

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.