CLINICAL AND NEUROIMAGING EXAMINATION 3-TL MR TRACTOGRAPHY OF CAUDAL PARTS OF THE SPINAL CORD IN VARIOUS FORMS OF SPINAL DYSRAPHISMS IN CHILDREN

International Journal of Cognitive Neuroscience and Psychology

view article

Keywords

fixed spinal cord syndrome
end-thread abnormalities
cicatricial-adhesive inflammatory process

How to Cite

M. B, K., & Sh.T, N. (2024). CLINICAL AND NEUROIMAGING EXAMINATION 3-TL MR TRACTOGRAPHY OF CAUDAL PARTS OF THE SPINAL CORD IN VARIOUS FORMS OF SPINAL DYSRAPHISMS IN CHILDREN. International Journal of Cognitive Neuroscience and Psychology, 2(9), 31–33. Retrieved from https://medicaljournals.eu/index.php/IJCNP/article/view/932

Abstract

One of the urgent problems of pediatric neurosurgery is the development of effective algorithms for the treatment of fixed spinal cord syndrome, characterized as a set of sensitive, motor, trophic disorders in the lower extremities, musculoskeletal deformities, pelvic and other disorders of varying severity, developing as a result of immobilization and tension of the caudal spinal cord during periods of accelerated growth of a child with spinal dysraphy, as well as due to scar-adhesive, inflammatory or tumor process.

view article

References

Beaulieu C. The basis of anisotropic water diffusion in the nervous system — a technical review // NMR in Biomedicine.— 2002.— Vol. 15 (7-8).— P 435-455.

Schwartz E. D., CooperE. T., Fan Y. et al. MRI diffusion coefficients in spinal cord correlate with axon morphometry // Neuroreport.— 2005.— Vol. 16 (1).— P 73-76.

Facon D., Ozanne A., Fillard P. et al. MR diffusion tensor imaging and fiber tracking in spinal cord compression // AJNR Am J. Neuroradiol.— 2005.— Vol. 26 (6).— P 1587-1594.

Filippi C. G., Andrews T, Gonyea J. V. et al. Magnetic resonance diffusion tensor imaging and tractography of the lower spinal cord: application to diastematomyelia and tethered cord // Eur. Radiol. — 2010.— Vol. 20 (9).— P 2194-2199.

Tsuchiya K., Fujikawa A., Honya K. et al. Diffusion tensor tractog¬raphy of the lower spinal cord // Neuroradiology.— 2008.— Vol. 50 (3).— P 221-225.

Ellingson B. M., Ulmer J. L., Kurpad S. N. et al. Diffusion tensor MR imaging of the neurologically intact human spinal cord // Am. J. Neuroradiol.— 2008.— Vol. 29 (7).— P 1279-1284.

Ford J. C., Hackney D. B., Lavi E. et al. Dependence of apparent diffusion coefficients on axonal spacing, membrane permeability, and diffusion time in spinal cord white matter // J. Magn. Reson. Imaging.— 1998.— Vol. 8 (4).— P 775-782.

ChungK., Kevetter G. A., Willis W. D. et al. An estimate of the ratio of propriospinal to long tract neurons in the sacral spinal cord of the rat // Neurosci. Lett.— 1984.— Vol. 44 (2).— P 173-177.

Gerasimenko Y. P., Makarovskii A. N., Nikitin O. A. Control of locomotor activity in humans and animals in the absence of supras¬pinal influences // Neurosci. Behav. Physiol.— 2002.— Vol. 32 (4).— P 417-423.

Yamada S., Won D. J., Pezeshkpour G. et al. Pathophysiology of tethered cord syndrome and similar complex disorders // Neurosurg. Focus.— 2007.— Vol. 23 (2).— P E6.

Хачатрян В. А., Сысоев К. В. Об актуальных проблемах патогенеза, диагностики и лечения синдрома фиксированного спинного мозга (аналитический обзор) // Нейрохирургия и неврология детского возраста.— 2014.— № 3.—С. 76-87.

Smith D. H., Wolf J. A., Lusardi T. A. et al. High tolerance and delayed elastic response of cultured axons to dynamic stretch injury // J. Neurosci.— 1999.— Vol. 19 (11).— P. 4263-4269.

Kocak A., Kilic A., Nurlu G. et al. A new model for tethered cord syndrome: a biochemical, electrophysiological, and electron micros¬copic study // Pediatr Neurosurg.— 1997.— Vol. 26 (3).— P 120-126.

Deo A. A., GrillR. J., Hasan K. M. et al. In vivo serial diffusion ten¬sor imaging of experimental spinal cord injury // J. Neurosci Res.— 2006.— Vol. 83 (5).— P 801-810.

Beaulieu C., Does M. D., Snyder R. E. et al. Changes in water dif¬fusion due to Wallerian degeneration in peripheral nerve // Magn. Reson. Med.— 1996.— Vol. 36.— P 627-63