The Effectiveness of Modern Detection Methods in the Diagnosis of Pathogenic Intestinal Infections and the Prospects for their Improvement
Keywords:
Parasites in the stomach and intestines, pathogens, bacteria, fungi, viruses, food, culture analysis, PCR, immunoassaysAbstract
Infectious diseases of the gastrointestinal tract are the main cause of morbidity and mortality in children in developing countries. A wide range of bacteria, viruses, protozoa and parasites can cause diarrhea and other intestinal infections. These infections are usually diagnosed by inoculation, microscopy, and immunoassay with antigen detection. Cultivation and microscopy are procedures that are insufficiently sensitive, time—consuming and require special laboratory equipment and well-trained personnel. However, newer methods of rapid antigen detection and molecular methods are constantly replacing traditional diagnostic methods due to advances in molecular diagnostics and the advent of tests that can be purchased. This review summarizes and discusses the availability, advantages and disadvantages of molecular methods for the detection and identification of human gastrointestinal pathogens. We will look at the advantages and disadvantages of direct and indirect methods of detecting parasites here. Many tests give false positive or false negative results. The tests available for use vary in sensitivity and specificity. Thus, tests for the presence of the pathogen should be carried out, especially in doubtful cases, using all available methods. The methods used should make it possible to distinguish an active infection from one suffered in the past. Finally, we will look at laboratory "case reports" in which we will discuss diagnostic methods that can successfully detect parasites. We will also talk about the possibilities of using artificial intelligence to improve the diagnosis of parasitic diseases.
References
Gerace E, Mancuso G, Midiri A, Poidomani S, Zummo S, Biondo C. Recent Advances in the Use of Molecular Methods for the Diagnosis of Bacterial Infections. Pathogens. 2022 Jun 8;11(6):663. doi: 10.3390/pathogens11060663.
Antimicrobial Resistance Collaborators Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0.
Ramirez M.S., Bonomo R.A., Tolmasky M.E. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules. 2020;10:720. doi:
3390/biom10050720.
Levi Y., Ben-David D., Estrin I., Saadon H., Krocker M., Goldstein L., Klafter D., Zilberman-Itskovich S., Marchaim D. The Impact of Differences in Surveillance Definitions of Hospital Acquired Urinary Tract Infections (HAUTI) Antibiotics. 2021;10:1262. doi:
3390/antibiotics10101262.
Vallabhaneni S., Huang J.Y., Grass J.E., Bhatnagar A., Sabour S., Lutgring J.D., Campbell D., Karlsson M., Kallen A.J., Nazarian E., et al. Antimicrobial Susceptibility Profiles to Predict the Presence of Carbapenemase Genes among Carbapenem-Resistant Pseudomonas aeruginosa Isolates. J. Clin. Microbiol. 2021;59:e02874-20. doi: 10.1128/JCM.02874-20.
Zhou Y.F., Liu P., Zhang C.J., Liao X.P., Sun J., Liu Y.H. Colistin Combined with Tigecycline: A Promising Alternative Strategy to Combat Escherichia coli Harboring bla NDM-5 and mcr-1. Front. Microbiol. 2019;10:2957. doi: 10.3389/fmicb.2019.02957.
Chen J., Zeng Y., Zhang R., Cai J. In Vivo Emergence of Colistin and Tigecycline Resistance in Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae during Antibiotics Treatment. Front. Microbiol. 2021;12:702956. doi: 10.3389/fmicb.2021.702956.
Brinkwirth S., Ayobami O., Eckmanns T., Markwart R. Hospital-acquired infections caused by enterococci: A systematic review and meta-analysis, WHO European Region, 1 January 2010 to 4 February 2020.
Euro Surveill. Bull. Eur. Mal. Transm. Eur. Commun. Dis. Bull. 2021;26:45. doi: 10.2807/1560-7917.ES.2021.26.45.2001628. Krawczyk B., Wityk P., Galecka M., Michalik M. The Many Faces of Enterococcus spp.-Commensal, Probiotic and Opportunistic Pathogen. Microorganisms. 2021;9:1900. doi: 10.3390/microorganisms9091900.
Aladhadh M. A Review of Modern Methods for the Detection of Foodborne Pathogens. Microorganisms. 2023; 11(5):1111. https://doi.org/10.3390/microorganisms11051111
Moon RC, Bleak TC, Rosenthal NA, Couturier B, Hemmert R, Timbrook TT, Brown H, Fang FC, 2023. Relationship between Diagnostic Method and Pathogen Detection, Healthcare Resource Use, and Cost in U.S. Adult Outpatients Treated for Acute Infectious Gastroenteritis. J Clin Microbiol 61:e01628-22.https://doi.org/10.1128/jcm.01628-22
Stanker, L.H.; Scotcher, M.C.; Cheng, L.; Ching, K.; McGarvey, J.; Hodge, D.; Hnasko, R. A monoclonal antibody based capture ELISA for botulinum neurotoxin serotype B: Toxin detection in food. Toxins 2013, 5, 2212–2226.
Valderrama, W.B.; Dudley, E.G.; Doores, S.; Cutter, C.N. Commercially available rapid methods for detection of selected food-borne pathogens. Crit. Rev. Food Sci. Nutr. 2016, 56, 1519–1531.
Rajkovic, A.; Jovanovic, J.; Monteiro, S.; Decleer, M.; Andjelkovic, M.; Foubert, A.; Beloglazova, N.; Tsilla, V.; Sas, B.; Madder, A. Detection of toxins involved in foodborne diseases caused by Gram-positive bacteria. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1605–1657.
Hassan, F.F.; Al-Jibouri, M.H.; Hashim, A.K.J. Isolation and Identification of Fungal Propagation in Stored Maize and detection of aflatoxin B1 Using TLC and ELISA Technique. Iraqi J. Sci. 2014, 55, 634–642.
Ounleye, A.O.; Olaiya, G.A. Isolation, Identification and Mycotoxin Production of Some Mycoflora of Dried Stockfish (Gadus morhua). Acad. J. Sci 2015, 4, 345–363.
Oplatowska-Stachowiak, M.; Sajic, N.; Xu, Y.; Haughey, S.A.; Mooney, M.H.; Gong, Y.Y.; Verheijen, R.; Elliott, C.T. Fast and sensitive aflatoxin B1 and total aflatoxins ELISAs for analysis of peanuts, maize and feed ingredients. Food Control 2016, 63, 239–245.
Beley, M.A.J.; Teves, F.G.; Reina, M.; Madamba, S. Isolation of fungal species and detection of aflatoxin from soy milk products using ELISA method. Int. Res. J. Biol. Sci 2013, 2, 45–48.
Kim, H.; Chung, D.-R.; Kang, M. A new point-of-care test for the diagnosis of infectious diseases based on multiplex lateral flow immunoassays. Analyst 2019, 144, 2460–2466.
Dąbrowska J, Groblewska M, Bendykowska M, Sikorski M, Gromadzka G. Effective Laboratory Diagnosis of Parasitic Infections of the Gastrointestinal Tract: Where, When, How, and What Should We Look For? Diagnostics. 2024; 14(19):2148.
https://doi.org/10.3390/diagnostics14192148
Mohtar, J., Mallah, H., Mardirossian, J.M. et al. Enhancing enteric pathogen detection: implementation and impact of multiplex PCR for improved diagnosis and surveillance. BMC Infect Dis 24, 171 (2024). https://doi.org/10.1186/s12879-024-09047-z
El Achkar H, Ghandour L, Farran S, Araj GF. Prevalence of intestinal parasites during pre- and post-COVID-19 pandemic at a tertiary care center in Lebanon. J Infect Dev Ctries. 2023;17(6):826–31.
Osman M, El Safadi D, Cian A, Benamrouz S, Nourrisson C, Poirier P, Pereira B, Razakandrainibe R, Pinon A, Lambert C, et al. Prevalence and risk factors for intestinal protozoan infections with Cryptosporidium, Giardia, Blastocystis and Dientamoeba among Schoolchildren in Tripoli, Lebanon. PLoS Negl Trop Dis. 2016;10(3):e0004496.
Harastani HH, Reslan L, Sabra A, Ali Z, Hammadi M, Ghanem S, Hajar F, Matar GM, Dbaibo GS, Zaraket H. Genetic diversity of human Rotavirus A among Hospitalized Children Under-5 years in Lebanon. Front Immunol. 2020;11:317.
Ning T, Liu S, Xu J, Yang Y, Zhang N, Xie S, Min L, Zhang S, Zhu S, Wang Y. Potential intestinal infection and faecal-oral transmission of human coronaviruses. Rev Med Virol. 2022;32(6):e2363.
Kopel J, Perisetti A, Gajendran M, Boregowda U, Goyal H. Clinical insights into the gastrointestinal manifestations of COVID-19. Dig Dis Sci. 2020;65(7):1932–9.
Durairajan SSK, Singh AK, Saravanan UB, Namachivayam M, Radhakrishnan M, Huang JD, Dhodapkar R, Zhang H. Gastrointestinal manifestations of SARS-CoV-2: transmission, Pathogenesis, Immunomodulation, Microflora Dysbiosis, and clinical implications. Viruses 2023, 15(6).
Li LL, Liu N, Humphries EM, Yu JM, Li S, Lindsay BR, Stine OC, Duan ZJ. Aetiology of diarrhoeal disease and evaluation of viral-bacterial coinfection in children under 5 years old in China: a matched case-control study. Clin Microbiol Infect. 2016;22(4):381. e389-381 e316.
Luo X, Deng JK, Mu XP, Yu N, Che X. Detection and characterization of human astrovirus and sapovirus in outpatients with acute gastroenteritis in Guangzhou, China. BMC Gastroenterol. 2021;21(1):455.
Дэниел-Уэйман С., Фейл Г., Палмор Т., Грин К. Ю., Превотс Д. Р. Норовирусы, астровирусы и саповирусы среди пациентов с ослабленным иммунитетом в исследовательской больнице третичного звена. Диагностическая микробиология и инфекционные заболевания. 2018;92(2):143-146. doi: 10.1016/j.diagmicrobio.2018.05.017.
Моррис К. А., Дэвис К., Уилкокс М. Х. Влияние результатов ПЦР гена токсина Clostridium difficile на решения о деизоляции пациентов: оправдывает ли цель средства? Журнал по профилактике инфекций. 2018;19(3):138–140. doi: 10.1177/1757177418755309.
Зборомирска Ю., Вила Дж. Усовершенствованная молекулярная диагностика желудочно-кишечных инфекций на основе ПЦР: проблемы и возможности. Экспертный обзор молекулярной диагностики. 2016;16(6):631-640. doi: 10.1586/14737159.2016.1167599.
Момчилович С., Кантачесси С., Арсич-Арсениевич В., Отранто Д., Оташевич С. Т. Экспресс-диагностика паразитарных заболеваний: текущий сценарий и будущие потребности. Клиническая микробиология и инфекция. 2019;25(3):290-309. doi:
1016/j.cmi.2018.04.028.
Qingqing Liu Xiaojuan Jin Jun Cheng Huajun Zhou Yingjie Zhang Yuzhu Dai. Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review).Volume 27 Issue 5, page 104, https://doi.org/10.3892/mmr.2023.12991