The Role of Il-17 In Pathogenesis and Progression of Ankylosing Spondylitis
Keywords:
axial spondyloarthritis, inflammation, C-reactive protein, interleukin-17, HLA-B27Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease of the joints. It especially affects the sacroiliac joints and spine, as well as peripheral joints and visceral organs. AS progressively leads to inflammatory lesions and grows syndesmophytes, which cause disability and decrease quality of life. Besides, in advanced stages of disease may be accompanied with comorbidities, various disorders of heart conduction system and osteoporosis, malignancies and different complications as fracture of syndesmophytes, vision loss due to acute uveitis, aortic valve regurgitation. Early diagnosis and treatment may prevent or decrease functional disability of patients. For this need understand deeply the pathogenesis of disease. Below is given the role of IL-17 under pathways of AS.
References
Amor B, Dougados M, Mijiyawa M. Critères de classification des spondylarthropathies [Criteria of the classification of spondylarthropathies]. Rev Rhum Mal Osteoartic. 1990;57(2):85-89.
Dougados M, van der Linden S, et al. The European Spondylarthropathy Study Group preliminary criteria for the classification of spondylarthropathy. Arthritis Rheum. 1991;34(10):1218-1227. doi:10.1002/art.1780341003
Moll JM, Haslock I, Macrae IF, Wright V. Associations between ankylosing spondylitis, psoriatic arthritis, Reiter's disease, the intestinal arthropathies, and Behcet's syndrome. Medicine (Baltimore). 1974;53(5):343-364. doi:10.1097/00005792-197409000-00002
Sieper, Heijde D. Nonradiographic axial spondyloarthritis: new definition of an old disease? Arthritis Rheum. 65, 543–551 (2013)
Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet. 2017;390(10089):73-84. doi:10.1016/S0140-6736(16)31591-4
Wang R, Ward MM. Epidemiology of axial spondyloarthritis: an update. Curr Opin Rheumatol. 2018;30(2):137-143.
Stephanie A. Bernard, Mark J. Kransdorf et al. ACR Appropriateness Criteria chronic back pain suspected sacroiliitis spondyloarthropathy. Journal of the American College of Radiology 2017; 14, issue 5, S62-S70; doi:https://doi. org/10.1016/j.jacr.2017.01.048
Hay, Charles A et al. “Diagnostic delay in axial spondyloarthritis: a systematic review.” Clinical rheumatology vol. 41,7 (2022): 1939-1950. doi:10.1007/s10067-022-06100-7
Akgul, Ozgur, and Salih Ozgocmen. “Classification criteria for spondyloarthropathies.” World journal of orthopedics vol. 2,12 (2011): 107-15. doi:10.5312/wjo.v2.i12.07
Danve, A., Deodhar, A. Axial spondyloarthritis in the USA: diagnostic challenges and missed opportunities. Clin Rheumatol 38, 625–634 (2019). https://doi.org/10.1007/s10067-018-4397-3
Orr, Katharine E et al. “Magnetic resonance imaging of sacroiliitis in children: frequency of findings and interobserver reliability.” Pediatric radiology vol. 48,11 (2018): 1621-1628. doi:10.1007/s00247-018-4185-x
Weber, Ulrich et al. “Frequency and Anatomic Distribution of Magnetic Resonance Imaging Features in the Sacroiliac Joints of Young Athletes: Exploring "Background Noise" Toward a Data-Driven Definition of Sacroiliitis in Early Spondyloarthritis.” Arthritis & rheumatology (Hoboken, N.J.) vol. 70,5 (2018): 736-745. doi:10.1002/art.40429
McVeigh, Claire M, and Andrew P Cairns. “Diagnosis and management of ankylosing spondylitis.” BMJ (Clinical research ed.) vol. 333,7568 (2006): 581-5. doi:10.1136/bmj.38954.689583.DE.
Feldtkeller, Ernst, and Jon Erlendsson. “Definition of disease duration in ankylosing spondylitis.” Rheumatology international vol. 28,7 (2008): 693-6. doi:10.1007/s00296-007-0499-y
Deodhar, Atul et al. “Frequency of Axial Spondyloarthritis Diagnosis Among Patients Seen by US Rheumatologists for Evaluation of Chronic Back Pain.” Arthritis & rheumatology (Hoboken, N.J.) vol. 68,7 (2016): 1669-76. doi:10.1002/art.39612
Ritchlin, Christopher, and Iannis E Adamopoulos. “Axial spondyloarthritis: new advances in diagnosis and management.” BMJ (Clinical research ed.) vol. 372 m4447. 4 Jan. 2021, doi:10.1136/bmj.m4447.
Korotaeva, T et al. “Investigating diagnosis, treatment, and burden of disease in patients with ankylosing spondylitis in Central Eastern Europe and the United States: a real-world study.” Clinical rheumatology vol. 40,12 (2021): 4915-4926. doi:10.1007/s10067-021-05864-8
Seo, Mi Ryoung et al. “Delayed diagnosis is linked to worse outcomes and unfavourable treatment responses in patients with axial spondyloarthritis.” Clinical rheumatology vol. 34,8 (2015): 1397-405. doi:10.1007/s10067-014-2768-y
Yi, Esther et al. “Clinical, Economic, and Humanistic Burden Associated With Delayed Diagnosis of Axial Spondyloarthritis: A Systematic Review.” Rheumatology and therapy vol. 7,1 (2020): 65-87.
Gaffen, Sarah L. “Structure and signalling in the IL-17 receptor family.” Nature reviews. Immunology vol. 9,8 (2009): 556-67. doi:10.1038/nri2586
Chung, Soo-Hyun et al. “Interleukin-17 family members in health and disease. ”International immunology vol. 33,12 (2021): 723-729. doi:10.1093/intimm/dxab075
Cheng, P., Liu, T., Zhou, WY. et al. Role of gamma-delta T cells in host response against Staphylococcus aureus-induced pneumonia. BMC Immunol 13, 38 (2012). https://doi.org/10.1186/1471-2172-13-38
Sparber, Florian, and Salomé LeibundGut-Landmann. “Interleukin-17 in Antifungal Immunity.” Pathogens (Basel, Switzerland) vol. 8,2 54. 22 Apr. 2019, doi:10.3390/pathogens8020054
Gaffen, Sarah L et al. “IL-17 signaling in host defense against Candida albicans.” Immunologic research vol. 50,2-3 (2011): 181-7. doi:10.1007/s12026-011-8226-x.
Бабаева А.Р., Калинина Е.В., Звоноренко М.С., Кострюкова И.В., Емельянова А.Л. Патогенетические и клинические аспекты блокады интерлейкина 17 при спондилоартритах. Медицинский алфавит. 2020;(15 (2020)):5-9. https://doi.org/10.33667/2078-5631-2020-15-5-9
Gaston, J S H, and D R Jadon. “Th17 cell responses in spondyloarthritis.” Best practice & research. Clinical rheumatology vol. 31,6 (2017): 777-796. doi:10.1016/j.berh.2018.07.010
Lynde, Charles W et al. “Interleukin 17A: toward a new understanding of psoriasis pathogenesis.” Journal of the American Academy of Dermatology vol. 71,1 (2014): 141-50. doi:10.1016/j.jaad.2013.12.036
Benedetti, Giulia, and Pierre Miossec. “Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis.” European journal of immunology vol. 44,2 (2014): 339-47. doi:10.1002/eji.201344184
McGonagle, Dennis G et al. “The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: recent advances and controversies.” Annals of the rheumatic diseases vol. 78,9 (2019): 1167-1178. doi:10.1136/annrheumdis-2019-215356.
Wang, Chenggong et al. “T lymphocyte subset imbalances in patients contribute to ankylosing spondylitis.” Experimental and therapeutic medicine vol. 9,1 (2015): 250-256. doi:10.3892/etm.2014.2046
Menon, Bina et al. “Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression.” Arthritis & rheumatology (Hoboken, N.J.) vol. 66,5 (2014): 1272-81. doi:10.1002/art.38376
Teunissen, Marcel B M et al. “The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells.” The Journal of investigative dermatology vol. 134,12 (2014): 2898-2907. doi:10.1038/jid.2014.261
Gracey, Eric et al. “IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis.” Annals of the rheumatic diseases vol. 75,12 (2016): 2124-2132. doi:10.1136/annrheumdis-2015-208902
Tamassia, Nicola et al. “A Reappraisal on the Potential Ability of Human Neutrophils to Express and Produce IL-17 Family Members In Vitro: Failure to Reproducibly Detect It.” Frontiers in immunology vol. 9 795. 17 Apr. 2018, doi:10.3389/fimmu.2018.00795
Schett, Georg et al. “Enthesitis: from pathophysiology to treatment.” Nature reviews. Rheumatology vol. 13,12 (2017): 731-741. doi:10.1038/nrrheum.2017.188
Sherlock, Jonathan P et al. “IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells.” Nature medicine vol. 18,7 1069-76. 1 Jul. 2012, doi:10.1038/nm.2817
Ono, Takehito et al. “IL-17-producing γδ T cells enhance bone regeneration.” Nature communications vol. 7 10928. 11 Mar. 2016, doi:10.1038/ncomms10928
Reinhardt, Annika et al. “Interleukin-23-Dependent γ/δ T Cells Produce Interleukin-17 and Accumulate in the Enthesis, Aortic Valve, and Ciliary Body in Mice.” Arthritis & rheumatology (Hoboken, N.J.) vol. 68,10 (2016): 2476-86. doi:10.1002/art.39732
Yamamoto, Mayuko et al. “Psoriatic inflammation facilitates the onset of arthritis in a mouse model.” The Journal of investigative dermatology vol. 135,2 (2015): 445-453. doi:10.1038/jid.2014.426
McGonagle, Dennis G et al. “The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: recent advances and controversies.” Annals of the rheumatic diseases vol. 78,9 (2019): 1167-1178. doi:10.1136/annrheumdis-2019-215356
Cambré, I., Gaublomme, D., Burssens, A. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat Commun 9, 4613 (2018). https://doi.org/10.1038/s41467-018-06933-4
Schett, Georg et al. “Enthesitis: from pathophysiology to treatment.” Nature reviews. Rheumatology vol. 13,12 (2017): 731-741. doi:10.1038/nrrheum.2017.188
Dibra, Denada et al. “A spontaneous model of spondyloarthropathies that develops bone loss and pathological bone formation: A process regulated by IL27RA-/- and mutant-p53.” PloS one vol. 13,3 e0193485. 1 Mar. 2018, doi:10.1371/journal.pone.0193485
Chabaud, M, and P Miossec. “The combination of tumor necrosis factor alpha blockade with interleukin-1 and interleukin-17 blockade is more effective for controlling synovial inflammation and bone resorption in an ex vivo model.” Arthritis and rheumatism vol. 44,6 (2001): 1293-303. doi:10.1002/1529-0131(200106)44:6<1293::AID-ART221>3.0.CO;2-T
Adamopoulos, Iannis E et al. “Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors.” Arthritis research & therapy vol. 12,1 (2010): R29. doi:10.1186/ar2936
Sato, Kojiro et al. “Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction.” The Journal of experimental medicine vol. 203,12 (2006): 2673-82. doi:10.1084/jem.20061775
Zhang, Jing-Ru et al. “Different Modulatory Effects of IL-17, IL-22, and IL-23 on Osteoblast Differentiation.” Mediators of inflammation vol. 2017 (2017): 5950395. doi:10.1155/2017/5950395
Wang, Zhenguo et al. “IL-17A Inhibits Osteogenic Differentiation of Bone Mesenchymal Stem Cells via Wnt Signaling Pathway.” Medical science monitor : international medical journal of experimental and clinical research vol. 23 4095-4101. 24 Aug. 2017, doi:10.12659/msm.903027
Kampylafka, Eleni et al. “Resolution of synovitis and arrest of catabolic and anabolic bone changes in patients with psoriatic arthritis by IL-17A blockade with secukinumab: results from the prospective PSARTROS study.” Arthritis research & therapy vol. 20,1 153. 27 Jul. 2018, doi:10.1186/s13075-018-1653-5
Ono, Takehito et al. “IL-17-producing γδ T cells enhance bone regeneration.” Nature communications vol. 7 10928. 11 Mar. 2016, doi:10.1038/ncomms10928
Jo, Sungsin et al. “IL-17A induces osteoblast differentiation by activating JAK2/STAT3 in ankylosing spondylitis.” Arthritis research & therapy vol. 20,1 115. 7 Jun. 2018, doi:10.1186/s13075-018-1582-3
Эрдес Ш.Ф. ИНТЕРЛЕЙКИН 17А–НОВАЯ МИШЕНЬ АНТИЦИТОКИНОВОЙ ТЕРАПИИ АНКИЛОЗИРУЮЩЕГО СПОНДИЛИТА. Научно-практическая ревматология. 2016;54(1S):60-66. https://doi.org/10.14412/1995-4484-2016-1S-60-66
Blachier, Martin et al. “Factors associated with radiographic lesions in early axial spondyloarthritis. Results from the DESIR cohort.” Rheumatology (Oxford, England) vol. 52,9 (2013): 1686-93. doi:10.1093/rheumatology/ket207
Wu, Qi et al. “Neuropathic pain in ankylosing spondylitis: a psychophysics and brain imaging study.” Arthritis and rheumatism vol. 65,6 (2013): 1494-503. doi:10.1002/art.37920
Pinho-Ribeiro, Felipe A et al. “Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation.” Trends in immunology vol. 38,1 (2017): 5-19. doi:10.1016/j.it.2016.10.001
Richter, Frank et al. “Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents.” Arthritis and rheumatism vol. 64,12 (2012): 4125-34. doi:10.1002/art.37695
Meng, Xianze et al. “Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model.” Pain vol. 154,2 (2013): 294-305. doi:10.1016/j.pain.2012.10.022
McNamee, Kay E et al. “IL-17 induces hyperalgesia via TNF-dependent neutrophil infiltration.” Pain vol. 152,8 (2011): 1838-1845. doi:10.1016/j.pain.2011.03.035
Hu, Yan et al. “IL-17RC is required for IL-17A- and IL-17F-dependent signaling and the pathogenesis of experimental autoimmune encephalomyelitis.” Journal of immunology (Baltimore, Md. : 1950) vol. 184,8 (2010): 4307-16. doi:10.4049/jimmunol.0903614
Sun, Caixia et al. “IL-17 contributed to the neuropathic pain following peripheral nerve injury by promoting astrocyte proliferation and secretion of proinflammatory cytokines.” Molecular medicine reports vol. 15,1 (2017): 89-96. doi:10.3892/mmr.2016.6018
Deodhar, Atul et al. “Secukinumab provides rapid and persistent relief in pain and fatigue symptoms in patients with ankylosing spondylitis irrespective of baseline C-reactive protein levels or prior tumour necrosis factor inhibitor therapy: 2-year data from the MEASURE 2 study.” Clinical and experimental rheumatology vol. 37,2 (2019): 260-269.
McInnes, Iain B et al. “Secukinumab provides rapid and sustained pain relief in psoriatic arthritis over 2 years: results from the FUTURE 2 study.” Arthritis research & therapy vol. 20,1 113. 7 Jun. 2018, doi:10.1186/s13075-018-1610-3