Antispermantibody Level and Relationship with Some Parameters in Patients with Oligo asthenoteratozoospermia
Keywords:
Oligo Asthenoteratozoospermia, Antispermantibody, FSH, LH, testosterone hormone and IL17Abstract
OligoAsthenoteratozoospermia is a form of male infertility, affecting the quality of sperm motility and leading to decreased fertility rates. Current diagnostic and therapeutic methods fail to solve most infertility problems. Samples were collected from the Infertility Center at Al-Sadr Teaching Hospital, and the results showed that infertile individuals had significantly higher levels of Antispermantibody and Interleukin 17. The results indicated that the amount of testosterone FSH, LH, decreased significantly. The parameters had a direct correlation with testosterone. It can be said that the negative effect of Antispermantibody has a negative impact on men in terms of fertility, due to low levels of testosterone, weak immunity, or changes in sperm quality, which may lead to reproductive problems.
References
Cavallini, G. (2006). Male idiopathic oligoasthenoteratozoospermia. Asian journal of andrology, 8(2), 143-157.
Agarwal, A., Mulgund, A., Sharma, R., & Sabanegh, E. (2014). Mechanisms of oligozoospermia: an oxidative stress perspective. Systems biology in reproductive medicine, 60(4), 206-216.
Alahmar, A. T. (2022). Coenzyme Q10 improves sperm motility and antioxidant status in infertile men with idiopathic oligoasthenospermia. Clinical and Experimental Reproductive Medicine, 49(4), 277.
Alahmar, A. T. (2018). The effects of oral antioxidants on the semen of men with idiopathic oligoasthenoteratozoospermia. Clinical and Experimental Reproductive Medicine, 45(2), 57.
Al-Msaid, H. L., & Al-Sallami, A. S. (2018). Study the level of cytokine in unexplained and idiopathic infertile men. Journal of Pharmaceutical Sciences and Research, 10(4), 808-811.
AL-Msaid, H. L., Waleed, A. H., & AL-Sallami, A. S. (2019). Relationship Between Hyperviscosity and Sex Hormone in Azoospermia and Oligozoospermia Patients Compares with The Control Group. Int J Pharm Qual Assur, 10(4), 637-9.
Hayder, L. F., & Alaauldeen, S. M. (2018). Study of Catsper1 Protein Levels in Unexplained and Idiopathic Infertile Men. International Journal of Pharmaceutical Quality Assurance, 9(2), 195-198.
AL-Msaid, H. L., Khalfa, H. M., Rashid, A. A., & Hussain, N. N. M. (2024). Relationship between Sperm DNA Fragmentation and Interleukin 17 in Patients with Leukocytospermia. Journal of Bioscience and Applied Research, 10(4), 809-815.
Kopania, E. E., Thomas, G. W., Hutter, C. R., Mortimer, S. M., Callahan, C. M., Roycroft, E., ... & Good, J. M. (2025). Sperm competition intensity shapes divergence in both sperm morphology and reproductive genes across murine rodents. Evolution, 79(1), 11-27.
Nagy, A. M., Fahmy, H. A., Abdel-Hameed, M. F., Taher, R. F., Ali, A. M., Amin, M. M., ... & Elshamy, A. I. (2025). Protective effects of Euphorbia heterophylla against testicular degeneration in streptozotocin-induced diabetic rats in relation to phytochemical profile. PloS one, 20(1), e0314781.
Yao, G., Dou, X., Chen, X., Qi, H., Chen, J., Wu, P., ... & Hu, X. (2025). Association between sperm DNA fragmentation index and recurrent pregnancy loss: results from 1485 participants undergoing fertility evaluation. Frontiers in Endocrinology, 15, 1493186.
Liu, D., Han, X., Zou, W., Yang, Z., Peng, J., Li, Y., ... & Zhang, J. (2025). Probiotics Combined with Metformin Improves Sperm Parameters in Obese Male Mice through Modulation of Intestinal Microbiota Equilibrium. Reproductive Sciences, 32(1), 116-130.
Yang, Z., Luo, F., Song, C., Ma, Z., Tian, Y., Fu, Y., ... & Tao, J. (2025). Elevated Lipid Concentrations in Seminal Plasma Can Reduce Sperm Motility in Simmental Bulls. Animals, 15(2), 276.
Li, Y. J., Liu, A. X., Zeng, J. Y., Miao, Y., Zhang, M., Liu, X. Y., ... & Zeng, Q. (2025). Repeated measurements of urinary bisphenol A and its analogues in relation to sperm DNA damage. Journal of Hazardous Materials, 487, 137157.
Duma, M., Galarza, D. A., Delgado, K., Morocho, A., Bermúdez, G., Soria, M. E., ... & Perea, F. P. (2025). Epididymal bull sperm selection by Percoll® density-gradient centrifugation prior to conventional or ultra-rapid freezing enhances post-thaw sperm quality. Cryobiology, 118, 105200.
Srirangan, P., & Sabina, E. P. (2025). Protective effects of herbal compounds against cyclophosphamide-induced organ toxicity: a pathway-centered approach. Drug and Chemical Toxicology, 1-43.
Wu, K., Chen, Y., & Huang, W. (2025). Combined Molecular Toxicity Mechanism of Heavy Metals Mixtures. Toxicological Assessment of Combined Chemicals in the Environment, 125-172.
Surya, I. G. N. H. W. (2023). Integrated Acetic Acid Visual Inspection with Installation or Examination of Intrauterine Contraception Devices: Literature Review. Open Access Macedonian Journal of Medical Sciences, 11(F), 279-285.
Thongphakdee, A., Kiatsomboon, S., Noimoon, S., Kongprom, U., Boonorana, I., Karoon, S., ... & Thongtip, N. (2022). Semen characteristics and second successful artificial insemination of Asian elephant (Elephas maximus) in Thailand. Veterinary World, 15(5), 1246.
Kępka, K., Wójcik, E., & Wysokińska, A. (2023). Assessment of the genomic stability of calves obtained from artificial insemination and OPU/IVP in vitro fertilization. Reproduction in Domestic Animals, 58(9), 1289-1297.
Kumar, N., & Singh, A. K. (2021). The anatomy, movement, and functions of human sperm tail: an evolving mystery. Biology of reproduction, 104(3), 508-520.
Shi, H., Li, Q. Y., Li, H., Wang, H. Y., Fan, C. X., Dong, Q. Y., ... & Li, J. Y. (2024). ROS-induced oxidative stress is a major contributor to sperm cryoinjury. Human Reproduction, 39(2), 310-325.
Chianese, R., & Pierantoni, R. (2021). Mitochondrial reactive oxygen species (ROS) production alters sperm quality. Antioxidants, 10(1), 92.
Drevet, J. R., Hallak, J., Nasr-Esfahani, M. H., & Aitken, R. J. (2022). Reactive oxygen species and their consequences on the structure and function of mammalian spermatozoa. Antioxidants & Redox Signaling, 37(7-9), 481-500.
Andrabi, S. W., Ara, A., Saharan, A., Jaffar, M., Gugnani, N., & Esteves, S. C. (2024). Sperm DNA Fragmentation: Causes, evaluation and management in male infertility. JBRA Assisted Reproduction, 28(2), 306.
Alahmar, A. T., Singh, R., & Palani, A. (2022). Sperm DNA fragmentation in reproductive medicine: a review. Journal of human reproductive sciences, 15(3), 206-218.
Paira, D. A., Silvera-Ruiz, S., Tissera, A., Molina, R. I., Olmedo, J. J., Rivero, V. E., & Motrich, R. D. (2022). Interferon γ, IL-17, and IL-1β impair sperm motility and viability and induce sperm apoptosis. Cytokine, 152, 155834.