Abstract
Respiratory Distress Syndrome (RDS) stands as the main trigger for preterm infant mortality and morbidity because of insufficient surfactant and unready lungs of premature babies. CPAP has become one of the fundamental treatment modalities which simultaneously decreases pathological lung collapse and prevents injuries caused by ventilator use and promotes better oxygen levels. Research was conducted at Albatool Teaching Hospital to assess CPAP effectiveness for preterm babies (<37 weeks) with RDS during two months. This research showed respiratory improvements while pneumothorax affected 50% of cases and provoked pulmonary restriction in 46% of subjects. The findings showed no meaningful relationship between PROM and pneumothorax and adverse outcomes because optimized CPAP protocols effectively reduced complications (*p* = 0.685 and *p* = 0.256 respectively). Birth weights for subjects amounted to 1.687 ± 0.484 kilograms while gestational durations averaged 31.7 ± 2.71 weeks as established in worldwide RDS data. Subjects whose mothers had an average age of 30.62 ± 7.33 years did not demonstrate any relationship between maternal age and RDS outcome severity. The study demonstrates that standardized CPAP protocols hold a vital position in enhancing patient results especially within settings with limited resources while researchers should explore customized CPAP techniques.
References
Bancalari E, Claure N. Respiratory distress syndrome and surfactant: past, present and future. Neonatology. 2023;123(1):1-8.
Jobe AH. Mechanisms of lung injury and bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2023;207(5):518-529.
Sweet DG, Carnielli V, Greisen G, et al. European consensus guidelines on RDS: 2023 update. Neonatology. 2023;124(1):7-24.
American Academy of Pediatrics. Respiratory support in preterm infants: clinical practice guideline. Pediatrics. 2023;151(2):e2022060280.
Isayama T, Iwami H, McDonald S, et al. CPAP versus surfactant for extremely preterm infants: the OPTIMIST-A trial. N Engl J Med. 2022;387(2):157-166.
Roberts CT, Owen LS, Manley BJ. Nasal high-flow therapy for primary respiratory support in preterm infants. N Engl J Med. 2021;385(9):809-819.
De Luca D, Conti G, Piastra M, et al. Non-invasive respiratory support in preterm infants: CPAP or NIPPV? Arch Dis Child Fetal Neonatal Ed. 2022;107(3):245-250.
Kugelman A, Riskin A, Shoris I, et al. Bubble CPAP with variable flow vs. constant flow in preterm infants. J Perinatol. 2021;41(6):1352-1360.
Rüegger CM, Lorenz L, Kamlin COF, et al. Nasal trauma during CPAP in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2022;107(1):F72-F77.
Bashir T, Murki S, Kiran S, et al. Predictors of CPAP failure in preterm neonates. Indian Pediatr. 2021;58(12):1135-1139.
van Kaam AH, De Luca D, Hentschel R, et al. Automated oxygen control during CPAP in preterm infants. Pediatr Res. 2023;93(4):785-791.
Klotz D, Schneider H, Schumann S, et al. Non-invasive monitoring of lung volume during CPAP. Intensive Care Med. 2022;48(5):589-598.
Jensen EA, Foglia EE, Dysart KC, et al. CPAP and neurodevelopment in extremely preterm infants. JAMA Pediatr. 2023;177(3):259-267.
Bamat NA, Kirpalani H, Feudtner C, et al. CPAP versus mechanical ventilation and childhood asthma. Am J Respir Crit Care Med. 2021;204(8):910-918.
Kawaza K, Machen HE, Mwanza Z, et al. Bubble CPAP in low-resource settings. Lancet Glob Health. 2022;10(3):e373-e380.
Chawanpaiboon S, Vogel JP, Moller AB, et al. CPAP implementation in Southeast Asia. Bull World Health Organ. 2021;99(11):820-831.
Göpel W, Kribs A, Härtel C, et al. Less invasive surfactant administration (LISA) with CPAP. Pediatrics. 2022;149(1):e2021052509.
Aldana-Aguirre JC, Pinto M, Featherstone RM, et al. LISA vs. INSURE with CPAP. J Pediatr. 2021;231:62-67.
te Pas AB, Davis PG, Hooper SB, et al. CPAP and lung aeration in preterm lambs. Pediatr Res. 2023;93(2):345-351.
Schmölzer GM, Kumar M, Pichler G, et al. Cerebral oxygenation during CPAP. Arch Dis Child Fetal Neonatal Ed. 2021;106(4):F360-F365.
Subramaniam P, Ho JJ, Davis PG. Prophylactic CPAP for preterm infants. Cochrane Database Syst Rev. 2021;5(5):CD001243.
Lui K, Jones LJ, Foster JP, et al. CPAP levels for preterm neonates. JAMA Pediatr. 2022;176(3):269-278.
Rocha G, Soares P, Gonçalves A, et al. Early predictors of CPAP failure. Eur J Pediatr. 2023;182(1):231-239.
Sharma D, Farahbakhsh N, Shastri S, et al. Biomarkers for CPAP response. Pediatr Res. 2021;89(7):1658-1666.
Profit J, Gould JB, Bennett M, et al. CPAP quality bundles in NICUs. Pediatrics. 2022;150(1):e2021053824.
Lee HC, Kurtin PS, Wight NE, et al. CPAP implementation strategies. J Perinatol. 2023;43(1):32-39.
Yousef AJ, Lafi SS, Mahmood BS. Microbiology and cardiovascular health: The gut-heart axis in focus. J Rare Cardiovasc Dis. 2023;23–24.
Lista G, Meneghin F, Fontana P, et al. New CPAP prong designs. Neonatology. 2023;123(2):156-162.
Bucher HU, Klein SD, Hendriks MJ, et al. CPAP training programs. Arch Dis Child Educ Pract Ed. 2022;107(2):124-130.
Ramanathan R, Biniwale M, Sekar K, et al. Next-generation CPAP systems. J Perinat Med. 2023;51(1):1-10.
Schmidt B, Whyte RK, Roberts RS, et al. Cost-effectiveness of CPAP. Pediatrics. 2021;148(6):e2021052508.